Zobrazeno 1 - 10
of 123
pro vyhledávání: '"DEREUDRE, DAVID"'
The state space of our model is the Euclidean space in dimension d = 2. Simultaneously, from all points of a homogeneous Poisson point process, we let grow independent and identically distributed random continuum paths. Each path stops growing at tim
Externí odkaz:
http://arxiv.org/abs/2409.15824
We ask whether a stationary lattice in dimension $d$ whose points are shifted by identically distributed but possibly dependent perturbations remains hyperuniform. When $d = 1$ or $2$, we show that it is the case when the perturbations have a finite
Externí odkaz:
http://arxiv.org/abs/2405.19881
We prove the existence of a liquid-gas phase transition for continuous Gibbs point process in $\mathbb{R}^d$ with Quermass interaction. The Hamiltonian we consider is a linear combination of the volume $\mathcal{V}$, the surface measure $\mathcal{S}$
Externí odkaz:
http://arxiv.org/abs/2309.08338
Autor:
Dereudre, David, Flimmel, Daniela
We investigate the hyperuniformity of marked Gibbs point processes with weak dependencies among distant points whilst the interactions of close points are kept arbitrary. Some variants of stability and range assumptions are posed on the Papangelou in
Externí odkaz:
http://arxiv.org/abs/2306.17276
Autor:
Dereudre, David, Roelly, Sylvie
We analyse different Gibbsian properties of interactive Brownian diffusions X indexed by the lattice $Z^{d} : X = (X_{i}(t), i ∈ Z^{d}, t ∈ [0, T], 0 < T < +∞)$. In a first part, these processes are characterized as Gibbs states on path spaces
Externí odkaz:
http://opus.kobv.de/ubp/volltexte/2011/5263/
Autor:
Dereudre, David, Vasseur, Thibaut
For an inverse temperature $\beta>0$, we define the $\beta$-circular Riesz gas on $\mathbb{R}^d$ as any microscopic thermodynamic limit of Gibbs particle systems on the torus interacting via the Riesz potential $g(x) = \Vert x \Vert^{-s}$. We focus o
Externí odkaz:
http://arxiv.org/abs/2104.09408
Autor:
Dereudre, David
We consider the bond percolation model on the lattice $\mathbb{Z}^d$ ($d\ge 2$) with the constraint to be fully connected. Each edge is open with probability $p\in(0,1)$, closed with probability $1-p$ and then the process is conditioned to have a uni
Externí odkaz:
http://arxiv.org/abs/2102.06446
We investigate the existence and first percolation properties of general stopped germ-grain models. They are defined via a random set of germs generated by a homogeneous planar Poisson point process in $\mathbf{R}^{2}$. From each germ, a grain, compo
Externí odkaz:
http://arxiv.org/abs/2001.08027
Autor:
Dereudre, David, Vasseur, Thibaut
We provide a new proof of the existence of Gibbs point processes with infinite range interactions, based on the compactness of entropy levels. Our main existence theorem holds under two assumptions. The first one is the standard stability assumption,
Externí odkaz:
http://arxiv.org/abs/1903.09559
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.