Zobrazeno 1 - 10
of 94
pro vyhledávání: '"DEDIEU, Thomas"'
Autor:
Ciliberto, Ciro, Dedieu, Thomas
Publikováno v:
Ãpijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (July 9, 2024) epiga:11202
We classify linearly normal surfaces $S \subset \mathbf{P}^{r+1}$ of degree $d$ such that $4g-4 \leq d \leq 4g+4$, where $g>1$ is the sectional genus (it is a classical result that for larger $d$ there are only cones). We apply this to the study of t
Externí odkaz:
http://arxiv.org/abs/2304.01851
Publikováno v:
Forum of Mathematics - Sigma, 11 E52 (2023)
Let $(S,L)$ be a general polarized Enriques surface, with $L$ not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible $\delta$-nodal curves in the linear system $|L|$, with $0\leq \delta\leq p_
Externí odkaz:
http://arxiv.org/abs/2109.10735
Publikováno v:
Math. Nachr. (2022), 1-14
We prove that certain Severi varieties of nodal curves of positive genus on general blow-ups of the twofold symmetric product of a general elliptic curve are non-empty and smooth of the expected dimension. This result, besides its intrinsic value, is
Externí odkaz:
http://arxiv.org/abs/2109.09864
Autor:
Dedieu, Thomas, Manivel, Laurent
Mukai varieties are Fano varieties of Picard number one and coindex three. In genus seven to ten they are linear sections of some special homogeneous varieties. We describe the generic automorphism groups of these varieties. When they are expected to
Externí odkaz:
http://arxiv.org/abs/2105.08984
Autor:
Dedieu, Thomas, Sernesi, Edoardo
Publikováno v:
pp 119--143 in: Dedieu, T., Flamini, F., Fontanari, C., Galati, C., Pardini, R. (eds) The Art of Doing Algebraic Geometry. Trends in Mathematics. Birkh\"auser, Cham, 2023
We study the existence of deformations of all $14$ Gorenstein weighted projective spaces $\mathbf P$ of dimension $3$ by computing the number of times their general anticanonical divisors are extendable. In favorable cases (8 out of 14), we find that
Externí odkaz:
http://arxiv.org/abs/2103.08210
Autor:
Ciliberto, Ciro, Dedieu, Thomas
Let $\mathcal{KC}_g ^k$ be the moduli stack of pairs $(S,C)$ with $S$ a $K3$ surface and $C\subset S$ a genus $g$ curve with divisibility $k$ in $\mathrm{Pic}(S)$. In this article we study the forgetful map $c_g^k:(S,C) \mapsto C$ from $\mathcal{KC}_
Externí odkaz:
http://arxiv.org/abs/2012.10642
Autor:
Ciliberto, Ciro, Dedieu, Thomas
In this paper we consider double covers of the projective space in relation with the problem of extensions of varieties, specifically of extensions of canonical curves to $K3$ surfaces and Fano 3-folds. In particular we consider $K3$ surfaces which a
Externí odkaz:
http://arxiv.org/abs/2008.03109
Autor:
Dedieu, Thomas
In this short note, I point out that results of Ballico and Kool--Shende--Thomas together imply that on $K3$, Enriques, and Abelian surfaces, if $L$ is a very ample and $(2p_a(L)-2g-1)$-spanned line bundle, then the equigeneric Severi variety $V_{g}(
Externí odkaz:
http://arxiv.org/abs/1905.11469
Publikováno v:
Ark. Mat. 58 (2020), 71--85
We prove that the locus of Prym curves $(C,\eta)$ of genus $g \geq 5$ for which the Prym-canonical system $|\omega_C(\eta)|$ is base point free but the Prym--canonical map is not an embedding is irreducible and unirational of dimension $2g+1$.
C
C
Externí odkaz:
http://arxiv.org/abs/1903.05702