Zobrazeno 1 - 10
of 58
pro vyhledávání: '"DE GRANDI, C"'
Publikováno v:
J. Phys.: Condens. Matter 25 (2013) 404216
We present a general approach to describe slowly driven quantum systems both in real and imaginary time. We highlight many similarities, qualitative and quantitative, between real and imaginary time evolution. We discuss how the metric tensor and the
Externí odkaz:
http://arxiv.org/abs/1301.2329
Publikováno v:
Phys. Rev. B 84, 224303 (2011)
We propose a method to study dynamical response of a quantum system by evolving it with an imaginary-time dependent Hamiltonian. The leading non-adiabatic response of the system driven to a quantum-critical point is universal and characterized by the
Externí odkaz:
http://arxiv.org/abs/1106.4078
Autor:
De Grandi, C., Polkovnikov, A.
Publikováno v:
"Quantum Quenching, Annealing and Computation", Eds. A. Das, A. Chandra and B. K. Chakrabarti, Lect. Notes in Phys., vol. 802 (Springer, Heidelberg 2010)
We discuss the application of the adiabatic perturbation theory to analyze the dynamics in various systems in the limit of slow parametric changes of the Hamiltonian. We first consider a two-level system and give an elementary derivation of the asymp
Externí odkaz:
http://arxiv.org/abs/0910.2236
Publikováno v:
Phys. Rev. B 81, 224301 (2010)
We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter $\lambda(t)$ changes in time as $\lambda(t)\sim
Externí odkaz:
http://arxiv.org/abs/0910.0876
Publikováno v:
Phys. Rev. B 81, 012303 (2010)
We study the dynamical response of a system to a sudden change of the tuning parameter $\lambda$ starting (or ending) at the quantum critical point. In particular we analyze the scaling of the excitation probability, number of excited quasiparticles,
Externí odkaz:
http://arxiv.org/abs/0909.5181
Publikováno v:
Phys. Rev. Lett. 101, 230402 (2008)
We discuss two complementary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law sc
Externí odkaz:
http://arxiv.org/abs/0804.4003
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.