Zobrazeno 1 - 10
of 356
pro vyhledávání: '"DA-JUN ZHANG"'
Publikováno v:
Symmetry, Vol 16, Iss 6, p 744 (2024)
In the paper, we describe a method for deriving generalized symmetries for a generic discrete quadrilateral equation that allows a Lax pair. Its symmetry can be interpreted as a flow along the tangent direction of its solution evolving with a Lie gro
Externí odkaz:
https://doaj.org/article/1190bcc33ce94e7da45266753d01a4c4
Publikováno v:
Open Communications in Nonlinear Mathematical Physics, Vol Volume 3 (2023)
In this paper we develop a bilinearisation-reduction approach to derive solutions to the classical and nonlocal nonlinear Schr\"{o}dinger (NLS) equations with nonzero backgrounds. We start from the second order Ablowitz-Kaup-Newell-Segur coupled equa
Externí odkaz:
https://doaj.org/article/09ac624191b64a20a627aa0d366095c3
Autor:
Da-jun Zhang
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 5, Iss , Pp 100362- (2022)
In this paper I give a short review on the continuous, semi-discrete and discrete Burgers equations, which are featured as integrable equations that are linearisable. The review focuses more on connections of these three kinds of equations and connec
Externí odkaz:
https://doaj.org/article/c66bca4a292c4535854dbb253aa09d87
Publikováno v:
Symmetry, Vol 14, Iss 11, p 2259 (2022)
In this paper, we present new Hamiltonian operators for the integrable couplings of the Ablowitz–Kaup–Newell–Segur hierarchy and the Kaup–Newell hierarchy. The corresponding Hamiltonians allow nontrivial degeneration. Multi-Hamiltonian struct
Externí odkaz:
https://doaj.org/article/31301345f4f84eb8afad5219a28902e2
Autor:
Guesh Yfter Tela, Da-jun Zhang
Publikováno v:
Reports on Mathematical Physics. 91:219-235
Publikováno v:
Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-12 (2019)
Abstract In this paper, we derive seed and 1-soliton solutions of the Q2 equation in the Adler–Bobenko–Suris list. The seed solutions of Q2 are obtained using those of Q1(δ) $\mbox{Q}1(\delta)$ and an non-auto Bäcklund transformation connecting
Externí odkaz:
https://doaj.org/article/23a633c1978b412fb57fb86f65d392b4
Publikováno v:
Mathematical Methods in the Applied Sciences. 46:8518-8531
Publikováno v:
Communications in Mathematical Physics. 399:599-650
We establish an infinite family of solutions in terms of elliptic functions of the lattice Boussinesq systems by setting up a direct linearisation scheme, which provides the solution structure for those equations in the elliptic case. The latter, whi
Publikováno v:
Teoreticheskaya i Matematicheskaya Fizika. 213:437-449
Развит прямой метод - метод матриц Коши - для построения матричных решений некоммутативных солитонных уравнений. Метод основан на уравн
Publikováno v:
Theoretical and Mathematical Physics. 213:1686-1697