Zobrazeno 1 - 10
of 30
pro vyhledávání: '"D.N., Chandrappa"'
Autor:
N., Kavitha a, b, ⁎, D.N., Chandrappa c
Publikováno v:
In Results in Control and Optimization April 2021 2
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Computational and Theoretical Nanoscience. 17:4162-4166
Recently, Mobile Ad-hoc Networks (MANETs) has emerged as a very important research area for provisioning service for remote client through internet, cloud computing, and cellular network. This work focusses on improving image access in MANET. Various
Satellite image matching and registration using affine transformation and hybrid feature descriptors
Autor:
D.N. Chandrappa, N.S. Anil
Publikováno v:
International Journal of Advanced Intelligence Paradigms. 24:126
Autor:
D.N. Chandrappa, N.S. Anil
Publikováno v:
Procedia Computer Science. 171:2779-2786
Multi-module images registration (IR) is a challenging task in the area of hyperspectral images collected from satellite and airborne sensors. This is because of substantial illumination variation and geometric distortions (GD), high accuracies and r
Publikováno v:
Procedia Computer Science. 171:1970-1978
Numerous design has been presented in recent time for reducing data access, retrieval latency and improve data availability and accessibility in mobile adhoc network (MANET). Existing design used cooperative caching (CC) and content prefetching (CP)
Autor:
N. Kavitha, D.N. Chandrappa
Publikováno v:
International Journal of Intelligent Systems Technologies and Applications. 20:436
Publikováno v:
International Journal of Advanced Intelligence Paradigms. 19:357
Prefetching the data is a popular technique that improves data accessibility in wireless networks. The improvement in access latency and cache-hit-ratio may diminish because of the mobility and limited cache-space of mobile-hosts-(MHs). The proposed
Autor:
N. Kavitha, D.N. Chandrappa
Publikováno v:
International Journal of Applied Pattern Recognition. 6:163
The traditional method's speed estimation accuracy depends on environmental changes and the new CNN technique accurately estimates speed only for quality video but input lacks, which leads to overfitting. Hence proposed method uses the Kalman filter
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.