Zobrazeno 1 - 10
of 27
pro vyhledávání: '"D.M. Akhmanova"'
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 105, Iss 1, Pp 74-82 (2022)
A boundary value problem for a fractionally loaded heat equation is considered in the first quadrant. The loaded term has the form of the Riemann-Liouville’s fractional derivative with respect to the time variable, and the order of the derivative i
Externí odkaz:
https://doaj.org/article/29a0a8464f4140d0a1e91e2339cc38d8
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 98, Iss 2 (2020)
The article considers a homogeneous boundary - value problem for the heat equation in the non - cylindrical domain, namely, in an inverted pyramid with a vertex at the origin of coordinates, two faces of which lie in coordinate planes.A solution to t
Externí odkaz:
https://doaj.org/article/bb69097b06af4360b440f8d30326923b
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 98, Iss 2 (2020)
In the paper we study issues of a strong solution for "essentially" loaded differential equations of the parabolic type in bounded domains. Features of the problems under consideration: for example, in the L 2( Q ) space the corresponding differentia
Externí odkaz:
https://doaj.org/article/2600a95640fd4db39d50d87a15f89ad6
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 96, Iss 4 (2019)
An nonhomogeneous integral equation with a singular kernel is considered. A feature of the equation under study is the incompressibility of the integral operator. In the study of the equation, an auxiliary simpler equation is used with the right - ha
Externí odkaz:
https://doaj.org/article/1965648e17394be093d97aafacfc64df
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 96, Iss 4 (2019)
The article is devoted to the research of boundary value problems for the spectrum - loaded operator of heat conduction with the moving point of loading to the temporary axle in zero or on infinity. For strongly loaded parabolic 2k - order equations
Externí odkaz:
https://doaj.org/article/c7285cc45b29433aa197e7ae01550790
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 94, Iss 2 (2019)
In this paper the issues of the solvability of a pseudo-Volterra nonhomogeneous integral equation of the second kind are studied. The solution to the corresponding homogeneous equation and the classes of the uniqueness of the solution are found in [1
Externí odkaz:
https://doaj.org/article/8d47c74aa3824d7cbd59054b42bb3057
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 93, Iss 1 (2019)
In this paper, we study the solvability of a second - kind pseudo-Volterra integral equation. By replacing the right - hand side and the unknown function, the integral equation is reduced to an integral equation, the kernel of which is not «compress
Externí odkaz:
https://doaj.org/article/7ddf4525e6ff4153b56fc627a23d907f
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 93, Iss 1 (2019)
The wide range of problems of mathematical physics is reduced to a special Volterra integral equation of the second kind or to integral equations with variable limits of integration. Among such problems we can include: boundary value problems for spe
Externí odkaz:
https://doaj.org/article/1372261d38ae4537b18f6eed52a18b03
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 89, Iss 1 (2018)
In the article it is shown that the homogeneous Volterra integral equation of the second kind, to which the homogeneous boundary value problem of heat conduction in the degenerating domain is reduced, has a nonzero solution. The boundary of the domai
Externí odkaz:
https://doaj.org/article/09cc656e61564712adf64dac12d8222a
Autor:
D.M. Akhmanova, A.Ye. Omirbekova
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 77, Iss 1 (2015)
В статье рассмотрено сингулярное интегральное уравнение Вольтерра второго рода, к которому редуцируется ряд краевых задач для нагруже
Externí odkaz:
https://doaj.org/article/3880192799e842b4a9ae796506930672