Zobrazeno 1 - 10
of 685
pro vyhledávání: '"D. W. B."'
Autor:
Lazar, A. J., Somerset, D. W. B.
In 2010 a question of Arhangel'skii's highlighted a gap in the knowledge of k_{\omega}-spaces. His specific question had in fact been answered by Siwiec in 1976, but the highlighted gap still remains. We introduce the simple idea of pure quotient map
Externí odkaz:
http://arxiv.org/abs/2010.03741
Autor:
D. W. B. Robinson
Publikováno v:
Tyndale Bulletin, Vol 10 (1962)
Externí odkaz:
https://doaj.org/article/13e8d2119cd14c16853f76d923d24fb8
Autor:
Archbold, R. J., Somerset, D. W. B.
Let A be a C_0(X)-algebra. Then the multiplier algebra M(A) is a C(Y)-algebra in a natural way, where Y is the Stone-Cech compactification of X. Each x in X gives rise to an ideal J_x of A and an ideal H_x of M(A). The ideal J_x is contained in H_x,
Externí odkaz:
http://arxiv.org/abs/1210.3251
This paper continues the study of spectral synthesis and the topologies $\tau_{\infty}$ and $\tau_r$ on the ideal space of a Banach algebra, concentrating on the class of Banach $^*$-algebras, and in particular on $L^1$-group algebras. It is shown th
Externí odkaz:
http://arxiv.org/abs/math/9909173
Autor:
Feinstein, J. F., Somerset, D. W. B.
This paper continues the study of spectral synthesis and the topologies $\tau_{\infty}$ and $\tau_r$ on the ideal space of a Banach algebra, concentrating particularly on the class of Haagerup tensor products of C$^*$-algebras. For this class, it is
Externí odkaz:
http://arxiv.org/abs/math/9909149
Autor:
Feinstein, J. F., Somerset, D. W. B.
Let $A$ be a unital Banach function algebra with character space $\Phi_A$. For $x\in \Phi_A$, let $M_x$ and $J_x$ be the ideals of functions vanishing at $x$, and in a neighbourhood of $x$, respectively. It is shown that the hull of $J_x$ is connecte
Externí odkaz:
http://arxiv.org/abs/math/9811063
Autor:
Feinstein, J. F., Somerset, D. W. B.
In a previous paper the second author introduced a compact topology on the space of closed ideals of a unital Banach algebra A. If A is separable then this topology is either metrizable or else neither Hausdorff nor first countable. Here it is shown
Externí odkaz:
http://arxiv.org/abs/math/9809085
Autor:
Feinstein, J. F., Somerset, D. W. B.
A survey is given of the work on strong regularity for uniform algebras over the last thirty years, and some new results are proved, including the following. Let A be a uniform algebra on a compact space X and let E be the set of all those points x o
Externí odkaz:
http://arxiv.org/abs/math/9809073
Autor:
Somerset, D. W. B.
Publikováno v:
Proceedings of the American Mathematical Society, 1999 May 01. 127(5), 1379-1385.
Externí odkaz:
https://www.jstor.org/stable/119309