Zobrazeno 1 - 10
of 12
pro vyhledávání: '"D. V. Rutsky"'
Publikováno v:
Chernye Metally. :49-57
Autor:
D. V. Rutsky
Publikováno v:
Journal of Mathematical Sciences. 268:800-809
Autor:
D. V. Rutsky
Publikováno v:
Journal of Mathematical Sciences. 251:273-285
We consider couples (XA, YA) of Hardy-type spaces defined for quasi-Banach lattices of measurable functions on 𝕋×Ω. Under certain fairly general assumptions, the following conditions are shown to be equivalent: (XA, YA) is K-closed in (X, Y), th
Autor:
D. V. Rutsky
Publikováno v:
Journal of Mathematical Sciences. 229:561-567
Let X be a Banach lattice of measurable functions on ℝn × Ω having the Fatou property. We show that the boundedness of all Riesz transforms Rj in X is equivalent to the boundedness of the Hardy–Littlewood maximal operator M in both X and X′,
Autor:
D. V. Rutsky
Publikováno v:
St. Petersburg Mathematical Journal. 28:789-805
Autor:
D. V. Rutsky
Publikováno v:
St. Petersburg Mathematical Journal. 27:813-823
Autor:
D. V. Rutsky
Publikováno v:
Journal of Mathematical Sciences. 209:783-791
Let X be an A1-regular lattice of measurable functions and let Q be a projection that is also a Calderon–Zygmund operator. In this case, it is possible to define a space XQ consisting of functions f ∈ X for which Qf = f in a certain sense. By usi
Autor:
D. V. Rutsky
Publikováno v:
Journal of Mathematical Sciences. 202:601-612
Let (X, Y) be a couple of Banach lattices of measurable functions on $$ \mathbb{T} $$ × Ω having the Fatou property and satisfying a certain condition (∗), which makes it possible to consistently introduce the Hardy-type subspaces of X and Y. We
Autor:
S. V. Kislyakov, D. V. Rutsky
Publikováno v:
St. Petersburg Mathematical Journal. 24:313-326
Autor:
D. V. Rutsky
Publikováno v:
St. Petersburg Mathematical Journal. 23:381-412