Zobrazeno 1 - 7
of 7
pro vyhledávání: '"D. Trofymenko"'
Autor:
D. Trofymenko, O. Sush
Publikováno v:
Науковий вісник Ужгородського національного університету. Серія Право, Vol 2, Iss 72 (2022)
Розбудова повноцінно функціонуючих ринків капіталу є вкрай важливим завданням на сучасному етапі розвитку української економіки. З пр
Externí odkaz:
https://doaj.org/article/3e4bd243d865418ba5c2d78faf9d4e1a
Autor:
D. Trofymenko, O. Sush
Publikováno v:
Uzhhorod National University Herald. Series: Law. 2:100-107
The development of fully functioning capital markets is an extremely important task at the current stage of development of the Ukrainian economy. With the adoption of the Law of Ukraine «On Capital Markets and Organized Commodity Markets», the issu
Autor:
Olga D. Trofymenko
Publikováno v:
Journal of Mathematical Sciences. 254:439-443
We characterize solutions of the mean value linear elliptic equation with constant coefficients in the complex plane in the case of regular polygon.
Autor:
O. D. Trofymenko, A. V. Levchuk
Publikováno v:
Вісник Донецького національного університету. Серія А: Природничі науки. :108-114
Autor:
Olga D. Trofymenko
Publikováno v:
Journal of Mathematical Sciences. 229:96-107
Convolution equations generated by distributions with compact supports and the corresponding mean value theorems was investigated by many authors. In particular, Volchkov described a wide class of radial distributions with compact supports such that
Publikováno v:
Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations. 68
We prove a mean value theorem that characterizes continuous weak solutions of homogeneous linear partial differential equations with constant coefficients in Euclidean domains. In this theorem the mean value of a smooth function with respect to a com
Autor:
O. D. Trofymenko
Publikováno v:
Ukrainian Mathematical Journal. 63:815-826
We prove a mean-value theorem for polynomials of a special form. We investigate the case of a sum over the vertices of a regular polygon and obtain a criterion for an equation of a special form to be satisfied.