Zobrazeno 1 - 10
of 46
pro vyhledávání: '"D. R. Yafaev"'
Autor:
D. R. Yafaev
Publikováno v:
Bulletin of Mathematical Sciences, Vol 12, Iss 03 (2022)
We find and discuss asymptotic formulas for orthonormal polynomials [Formula: see text] with recurrence coefficients [Formula: see text]. Our main goal is to consider the case where off-diagonal elements [Formula: see text] as [Formula: see text]. Fo
Externí odkaz:
https://doaj.org/article/3e5e05395cfb4c5086e14881e702e580
Autor:
D. R. Yafaev
Publikováno v:
Journal of the London Mathematical Society. 95:742-762
We show that a semibounded Wiener-Hopf quadratic form is closable in the space $L^2({\Bbb R}_{+})$ if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener-Hopf opera
Autor:
D. R. Yafaev
Publikováno v:
Journal of Approximation Theory
Journal of Approximation Theory, Elsevier, 2021, 262, pp.105506. ⟨10.1016/j.jat.2020.105506⟩
Journal of Approximation Theory, 2021, 262, pp.105506. ⟨10.1016/j.jat.2020.105506⟩
Journal of Approximation Theory, Elsevier, 2021, 262, pp.105506. ⟨10.1016/j.jat.2020.105506⟩
Journal of Approximation Theory, 2021, 262, pp.105506. ⟨10.1016/j.jat.2020.105506⟩
Our goal is to find an asymptotic behavior as n → ∞ of the orthogonal polynomials P n ( z ) defined by Jacobi recurrence coefficients a n (off-diagonal terms) and b n (diagonal terms). We consider the case a n → ∞ , b n → ∞ in such a way
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59e52cdb28d40884d36444fad8b49666
Autor:
D. R. Yafaev, Alexander V. Sobolev
Publikováno v:
Journal of Operator Theory
Journal of Operator Theory, Theta Foundation, 2020, 84 (2), pp.453-485. ⟨10.7900/jot.2019jun19.2244⟩
Journal of Operator Theory, 2020, 84 (2), pp.453-485. ⟨10.7900/jot.2019jun19.2244⟩
Journal of Operator Theory, Theta Foundation, 2020, 84 (2), pp.453-485. ⟨10.7900/jot.2019jun19.2244⟩
Journal of Operator Theory, 2020, 84 (2), pp.453-485. ⟨10.7900/jot.2019jun19.2244⟩
The paper pursues three objectives. Firstly, we provide an expanded version of spectral analysis of self-adjoint Toeplitz operators, initially built by M. Rosenblum in the 1960's. We offer some improvements to Rosenblum's approach: for instance, our
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa8519699f35629aef6d297dbb352084
https://hal.archives-ouvertes.fr/hal-02333871
https://hal.archives-ouvertes.fr/hal-02333871
Autor:
D. R. Yafaev
Publikováno v:
Functional Analysis and Its Applications
Functional Analysis and Its Applications, Springer Verlag, 2021, 55 (2), pp.140-158. ⟨10.1134/S0016266321020064⟩
Functional Analysis and Its Applications, 2021, 55 (2), pp.140-158. ⟨10.1134/S0016266321020064⟩
Functional Analysis and Its Applications, Springer Verlag, 2021, 55 (2), pp.140-158. ⟨10.1134/S0016266321020064⟩
Functional Analysis and Its Applications, 2021, 55 (2), pp.140-158. ⟨10.1134/S0016266321020064⟩
Orthogonal polynomials $$P_{n}(\lambda)$$ are oscillating functions of $$n$$ as $$n\to\infty$$ for $$\lambda$$ in the absolutely continuous spectrum of the corresponding Jacobi operator $$J$$ . We show that, irrespective of any specific assumptions o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6b1558c9df4a97489bc87fa2c186892
Autor:
D. R. Yafaev
Publikováno v:
Letters in Mathematical Physics
Letters in Mathematical Physics, Springer Verlag, 2019, 109 (12), pp.2625-2648. ⟨10.1007/s11005-019-01200-z⟩
Letters in Mathematical Physics, 2019, 109 (12), pp.2625-2648. ⟨10.1007/s11005-019-01200-z⟩
Letters in Mathematical Physics, Springer Verlag, 2019, 109 (12), pp.2625-2648. ⟨10.1007/s11005-019-01200-z⟩
Letters in Mathematical Physics, 2019, 109 (12), pp.2625-2648. ⟨10.1007/s11005-019-01200-z⟩
Our goal is to develop spectral and scattering theories for the one-dimensional Schrodinger operator with a long-range potential q(x), $$x\ge 0$$. Traditionally, this problem is studied with a help of the Green–Liouville approximation. This require
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dd8785b8465db71fc88a074cb50dc0ad
http://arxiv.org/abs/1810.03112
http://arxiv.org/abs/1810.03112
Autor:
D. R. Yafaev
Publikováno v:
Letters in Mathematical Physics
Letters in Mathematical Physics, 2020, 110 (11), pp.2857-2891. ⟨10.1007/s11005-020-01313-w⟩
Letters in Mathematical Physics, Springer Verlag, 2020, 110 (11), pp.2857-2891. ⟨10.1007/s11005-020-01313-w⟩
Letters in Mathematical Physics, 2020, 110 (11), pp.2857-2891. ⟨10.1007/s11005-020-01313-w⟩
Letters in Mathematical Physics, Springer Verlag, 2020, 110 (11), pp.2857-2891. ⟨10.1007/s11005-020-01313-w⟩
Our goal is to find asymptotic formulas for orthonormal polynomials $$P_{n}(z)$$ with the recurrence coefficients slowly stabilizing as $$n\rightarrow \infty $$ . To that end, we develop scattering theory of Jacobi operators with long-range coefficie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84a611cf90ce3600edf828eba452b6bd
Autor:
D. R. Yafaev
Publikováno v:
Reviews in Mathematical Physics
Reviews in Mathematical Physics, World Scientific Publishing, 2018, 30 (8), pp.1840019. ⟨10.1142/S0129055X18400196⟩
Reviews in Mathematical Physics, 2018, 30 (8), pp.1840019. ⟨10.1142/S0129055X18400196⟩
Reviews in Mathematical Physics, World Scientific Publishing, 2018, 30 (8), pp.1840019. ⟨10.1142/S0129055X18400196⟩
Reviews in Mathematical Physics, 2018, 30 (8), pp.1840019. ⟨10.1142/S0129055X18400196⟩
We study semi-infinite Jacobi matrices $H=H_{0}+V$ corresponding to trace class perturbations $V$ of the "free" discrete Schr\"odinger operator $H_{0}$. Our goal is to construct various spectral quantities of the operator $H$, such as the weight func
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::816dd75752eac7d1e21bf53733f8388f
https://hal.archives-ouvertes.fr/hal-01673042/file/Jacobi_LD_final.pdf
https://hal.archives-ouvertes.fr/hal-01673042/file/Jacobi_LD_final.pdf