Zobrazeno 1 - 10
of 38
pro vyhledávání: '"D. K. Faddeev"'
The central problem of modern Galois theory involves the inverse problem: given a field $k$ and a group $G$, construct an extension $L/k$ with Galois group $G$. The embedding problem for fields generalizes the inverse problem and consists in finding
Autor:
D. K. Faddeev
Publikováno v:
Journal of Mathematical Sciences. 89:1154-1158
The present paper develops the ideas presented in [1]. Let o be a Dedeking ring, and let Λ be a finitely generated algebra over o. An integral representation in the broad sense of the ring Λ over o is a homomorphism of Λ to the endomorphism ring o
Publikováno v:
Translations of Mathematical Monographs ISBN: 9780821846452
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::928b01a97e8d8d955ca64bb62546307f
https://doi.org/10.1090/mmono/010
https://doi.org/10.1090/mmono/010
Autor:
D. K. Faddeev
Publikováno v:
Journal of Soviet Mathematics. 52:3198-3198
Let σ be a Dedekind ring, let σ be a maximal order in a quadratic extension K of the field k of quotients of the ring σ, let Λ be a subring of the ring σ, containing σ and such that ΛK=K. It is proved that σ/Λ is a cyclic Λ-module. From her
Autor:
A G Aganbegyan, G Sh Rubinshtein, D K Faddeev, A D Aleksandrov, S L Sobolev, I V Romanovskii, Yu. G. Reshetnyak, M K Gavurin, V L Makarov, Semen S. Kutateladze
Publikováno v:
Russian Mathematical Surveys. 42:225-232
Autor:
D. K. Faddeev
Publikováno v:
Journal of Soviet Mathematics. 9:363-366
Two examples are given, showing the connections between the representations of algebraic numbers of a field by rational symmetric matrices, and the representations of integers of a field by symmetric integer-valued matrices.
Autor:
V. N. Faddeeva, D. K. Faddeev
Publikováno v:
Journal of Soviet Mathematics. 15:531-650
The authors' survey paper is devoted to the present state of computational methods in linear algebra. Questions discussed are the means and methods of estimating the quality of numerical solution of computational problems, the generalized inverse of