Zobrazeno 1 - 10
of 101
pro vyhledávání: '"D. K. Belashchenko"'
Autor:
D. K. Belashchenko
Publikováno v:
Russian Journal of Physical Chemistry A. 97:501-513
Autor:
D. K. Belashchenko
Publikováno v:
Russian Journal of Physical Chemistry A. 97:216-226
Autor:
D. K. Belashchenko
Publikováno v:
Russian Journal of Physical Chemistry A. 96:1390-1395
Autor:
D. K. Belashchenko
Publikováno v:
Russian Journal of Physical Chemistry A. 96:572-583
Autor:
D. K. Belashchenko
Publikováno v:
Russian Journal of Physical Chemistry A. 95:2375-2386
Autor:
D. K. Belashchenko
Publikováno v:
Russian Journal of Physical Chemistry A. 95:106-118
The pair contribution to the potential of sodium in the embedded atom model (EAM) is refined. Two potentials (EAM-2 and EAM-3) that differ in the shape of the embedding potentials are calculated from data on the shock compression and isothermal compr
Autor:
D. K. Belashchenko
Publikováno v:
Russian Journal of Physical Chemistry A. 94:1971-1981
The literature data on shock compression of compact and porous samples of a number of metals (copper, tin, lead, bismuth, iron, and nickel) and the use of these data in calculations of interparticle potentials in the embedded atom model (EAM) were co
Autor:
D. K. Belashchenko
Publikováno v:
High Temperature. 58:64-77
Two new potentials are proposed for the embedded-atom model for nickel: one that includes the thermal contribution of electrons to the energy and one that disregards it. The potential parameters are found based on the nickel properties in isobar p =
Autor:
D. K. Belashchenko
Publikováno v:
High Temperature. 57:848-858
A scheme is proposed for the incorporation of a screened Coulomb interaction into an embedded-atom model, which allows one to describe two- and multicomponent solutions with strong component interaction by the molecular dynamics method. The effective
Autor:
D. K. Belashchenko
Publikováno v:
Russian Journal of Physical Chemistry A. 93:1093-1105
The potential of the embedded-atom model (EAM) for liquid antimony is calculated, and the molecular dynamics models are constructed for antimony at temperatures of up to 2023 K and under conditions of shock compression up to a pressure of 131 GPa. It