Zobrazeno 1 - 10
of 605
pro vyhledávání: '"D. J. Needham"'
Autor:
J Billingham, D J Needham
Publikováno v:
Nonlinearity. 35:6098-6123
We study non-negative travelling wave solutions, u ≡ U(x − ct) with constant wavespeed c > 0, of the cubic nonlocal Fisher-KPP equation in one spatial dimension, namely, ∂ u ∂ t = ∂ 2 u ∂ x 2 + u 2 1 − 1 λ ∫ − ∞ ∞ ϕ y − x λ
Publikováno v:
Studies in Applied Mathematics. 146:330-370
Publikováno v:
Studies in Applied Mathematics. 146:301-329
In this paper we develop and significantly extend the thermal phase change model, introduced in [12], describing the process of paraffinic wax layer formation on the interior wall of a circular pipe transporting heated oil, when subject to external c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71f5aee64f18f8a7a203b044ea146632
http://arxiv.org/abs/2104.14298
http://arxiv.org/abs/2104.14298
Publikováno v:
Series on Analysis, Applications and Computation ISBN: 9789813223875
The Linearised Dam-Break Problem
The Linearised Dam-Break Problem
We employ the method of asymptotic coordinate expansions in time and space to determine the detailed structure of the solution to the linearised dambreak problem at the initial stage, in the far fields and at large time. We consider the situation whe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::71bbe3736592b64a312f28dce629a315
https://doi.org/10.1142/10543
https://doi.org/10.1142/10543
Autor:
J. C. Meyer, D. J. Needham
Publikováno v:
Journal of Differential Equations. 262:1747-1776
In this paper, we establish the existence of spatially inhomogeneous classical self-similar solutions to a non-Lipschitz semi-linear parabolic Cauchy problem with trivial initial data. Specifically we consider bounded solutions to an associated two-d
Autor:
D. J. Needham, J. C. Meyer
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 146:777-832
We study classical solutions of the Cauchy problem for a class of non-Lipschitz semilinear parabolic partial differential equations in one spatial dimension with sufficiently smooth initial data. When the nonlinearity is Lipschitz continuous, results
Publikováno v:
Studies in Applied Mathematics. 137:273-305
In this paper, we consider an initial-value problem for Burgers' equation with variable coefficients where x and t represent dimensionless distance and time, respectively, while , are given continuous functions of t ( > 0). In particular, we consider
The free surface and flow field structure generated by the uniform acceleration (with dimensionless acceleration $\unicode[STIX]{x1D70E}$) of a rigid plate, inclined at an angle $\unicode[STIX]{x1D6FC}\in (0,\unicode[STIX]{x03C0}/2)$ to the exterior
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::488a3e9d3c572aab1d7a804eb6257f7b
https://nottingham-repository.worktribe.com/file/927758/1/initial_development_of_a_jet_caused_by_fluid_body_and_free_surface_interaction_with_a_uniformly_accelerated_advancing_or_retreating_plate_part_1_the_principal_flow.pdf
https://nottingham-repository.worktribe.com/file/927758/1/initial_development_of_a_jet_caused_by_fluid_body_and_free_surface_interaction_with_a_uniformly_accelerated_advancing_or_retreating_plate_part_1_the_principal_flow.pdf
We consider the problem of a rigid plate, inclined at an angle $\unicode[STIX]{x1D6FC}\in (0,\unicode[STIX]{x03C0}/2)$ to the horizontal, accelerating uniformly from rest into, or away from, a semi-infinite strip of inviscid, incompressible fluid und
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a546678512f8707048135a74ae255825
https://eprints.nottingham.ac.uk/48620/8/initial_development_of_a_jet_caused_by_fluid_body_and_free_surface_interaction_with_a_uniformly_accelerated_advancing_or_retreating_plate_part_2_wellposedness_and_stability_of_the_principal_flow.pdf
https://eprints.nottingham.ac.uk/48620/8/initial_development_of_a_jet_caused_by_fluid_body_and_free_surface_interaction_with_a_uniformly_accelerated_advancing_or_retreating_plate_part_2_wellposedness_and_stability_of_the_principal_flow.pdf