Zobrazeno 1 - 10
of 1 106
pro vyhledávání: '"D. Guidotti"'
Publikováno v:
Ecological Informatics, Vol 82, Iss , Pp 102723- (2024)
Plant phenology is the study of cyclical events in a plant life cycle such as leaf bud burst, flowering, and fruiting. In this article the problem of olive phenology prediction is addressed through the use of Deep Learning. Although Neural Networks h
Externí odkaz:
https://doaj.org/article/55d9d3e5bbbe45bb88d1af2c3652d6a9
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
J. Petri, Alistair J. Murdoch, T. Ahrholz, E. Ranieri, D. Guidotti, Dimitrios S. Paraforos, M. Karampoiki, L.C. Todman, S.A. Mahmood, T. Engel, S. Antognelli
Publikováno v:
Precision agriculture ’21.
Publikováno v:
Sensors
Volume 20
Issue 21
Sensors (Basel, Switzerland)
Sensors, Vol 20, Iss 6381, p 6381 (2020)
Volume 20
Issue 21
Sensors (Basel, Switzerland)
Sensors, Vol 20, Iss 6381, p 6381 (2020)
Knowledge of phenological events and their variability can help to determine final yield, plan management approach, tackle climate change, and model crop development. THe timing of phenological stages and phases is known to be highly correlated with
Autor:
Simona Bosco, Giorgio Ragaglini, Iride Volpi, Simone Neri, Giorgio Virgili, Alberto Mantino, Patricia Laville, Pierluigi Meriggi, D. Guidotti, Michele Mammini
Publikováno v:
2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor).
Measuring at high frequency soil Auxes of carbon dioxide (CO 2 ), and nitrous oxide (N 2 O) in agricultural soils requires appropriate technology. With this aim, a prototype was developed and tested in agricultural soils for 5 months, within the fram
Publikováno v:
2020 Global Internet of Things Summit (GIoTS)
GIoTS
GIoTS
Several methods based on regression techniques are used for the prediction of phenological phases in modern olive growing. This study collects phenological observations and agrometeorological data for several Italian provinces. The aim of the analysi
Predicting the occurrence of B. oleae infestation is needed in sustainable olive tree growing, for the application of preventive control strategies. In this study, machine learning (ML) algorithms were tested to predict the occurrence of B. oleae inf
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4751f5265611125ae1c4d86b91506e6
http://hdl.handle.net/11382/535319
http://hdl.handle.net/11382/535319
Publikováno v:
GIoTS
Technology-based solutions warrant to guide farmers and agronomists towards more efficient use of irrigation water. Indeed, wise irrigation practices are urgently required to overcome the increasing shortage of water resources due to the impact of cl
Publikováno v:
Remote Sensing; Volume 13; Issue 6; Pages: 1224
Remote Sensing
Remote Sensing
Machine-learning algorithms used for modelling olive-tree phenology generally and largely rely on temperature data. In this study, we developed a prediction model on the basis of climate data and geophysical information. Remote measurements of weathe