Zobrazeno 1 - 10
of 10
pro vyhledávání: '"D. F. Paget"'
Publikováno v:
Journal of Approximation Theory. 50:49-57
It is well known that a near minimax polynomial approximation p is obtained by truncating the Chebyshev series of a function ƒ; after n + 1 terms. It is shown that if ƒ; ϵ C (n + 1) [−1, 1], then ∥ƒ; − p ∥ may be expressed in terms of ƒ;
Autor:
David Elliott, D. F. Paget
Publikováno v:
BIT. 16:32-40
An algorithm, based on the use of orthogonal polynomials, for product-integration is outlined. A general discussion on the convergence of such quadrature rules for finite intervals is then given. The paper concludes with five examples for each of whi
Autor:
D. F. Paget, David Elliott
Publikováno v:
BIT. 18:137-141
A recent theorem due to Nevai on the mean convergence of Lagrange interpolation is used to obtain sufficient conditions for the convergence of quadrature rules for product integration.
Autor:
D. F. Paget
Publikováno v:
Numerische Mathematik. 36:447-453
A quadrature rule is described for the numerical evaluation of Hadamard finite-part integrals with a double pole singularity within the range of integration. The rule is based upon the observation that such an integral is the derivative of a Cauchy p
Autor:
D. F. Paget
Publikováno v:
Journal of Approximation Theory. 50:58-68
Let s n denote the formal expansion of a function ƒ in a Jacobi series truncated after n + 1 terms. For ƒ ϵ C n + 1 [−1, 1] the uniform norm of ƒ − s n is expressed in terms of the ( n + 1)th derivative of ƒ. This expression is precise when
Autor:
D. F. Paget
Publikováno v:
BIT. 21:212-220
A quadrature rule is described for evaluating finite-part (f.p.) integrals of the form\( = \smallint _0^1 y^{ - af} (y)dy\), witha ≧ 1. The rule is obtained by interpolating tof by a polynomial which coincides withf at the shifted zeros of a Legend
Autor:
David Elliott, D. F. Paget
Publikováno v:
Mathematics of Computation. 33:301-309
Two quadrature rules for the approximate evaluation of Cauchy principal value integrals, with nodes at the zeros of appropriate orthogonal polynomials, are discussed. An expression for the truncation error, in terms of higher order derivatives, is gi
Autor:
David Elliott, D. F. Paget
Publikováno v:
Numerische Mathematik. 19:373-385
An algorithm is described for numerically evaluating Cauchy principal value (c.p.v.) integrals of the type[Figure not available: see fulltext.]. The remainder is expressed as a contour integral, from which realistic asymptotic estimates are obtained.
Autor:
David Elliott, D. F. Paget
Publikováno v:
Numerische Mathematik. 25:287-289
In a previous paper the authors proved that a quadrature rule for Cauchy principal value integrals converged for functions satisfying a Holder condition of order one. This result is now extended to demonstrate convergence of the rule for Holder conti
Autor:
Herta T. Freitag, H. L. Krall, Robert S. Doran, Michael Goldberg, J. A. H. Hunter, T. J. Kaczynski, W. J. Blundon, Haig Boligian, Richard L. Breisch, Ellis W. Detwiler, Gerald C. Dodds, M. G. Greening, Shiv Kumar, John Oman, D. F. Paget, Kim R. Penrose, Simeon Reich, Phil Tracy, C. s. Venkataraman, Michael Yoder, C. Stanley Ogilvy, Charles W. Trigg, G. L. N. Rao, Miss Nirmal, Huseyin Demir, E. F. Schmeichel, J. F. Rigby, Murray S. Klamkin, Sidney Spital, Hugh M. Edgar, Harley Flanders, Cecil G. Phipps, Albert Wilansky, Loring Tu, Warren Page, Norman Schaumberger, C. S. Venkataraman, Erwin Just, A. K. Austin, Francis Siwiec, Gregory Wulczyn, Hwa S. Hahn, David L. Silverman, Harold B. Curtis, E. F. Pinzka, Patricia La Fratta
Publikováno v:
Mathematics Magazine. 44:40