Zobrazeno 1 - 10
of 1 158
pro vyhledávání: '"D. D. Anderson"'
Autor:
D. D. Anderson, Sangmin Chun
Publikováno v:
Journal of Algebra and Its Applications. 21
An extension [Formula: see text] of commutative rings is strongly inert (respectively, inert) if for nonzero [Formula: see text], [Formula: see text] implies [Formula: see text] (respectively, there exists a unit [Formula: see text] with [Formula: se
Publikováno v:
Communications in Algebra. 49:173-184
Let $D$ be an integral domain. Then $D$ is an almost valuation (AV-)domain if for $a, b\in D\setminus \{0\}$ there exists a natural number $n$ with $a^{n}\mid b^{n}$ or $b^{n}\mid a^{n}$. AV-domains are closely related to valuation domains, for examp
Publikováno v:
Communications in Algebra. 48:3398-3407
In this article, we introduce S-multiplication modules which are a generalization of multiplication modules. Let M be an R-module and S⊆R a multiplicatively closed subset. M is said to be an S-mult...
Autor:
D. D. Anderson, Nitin Bisht
Publikováno v:
Communications in Algebra. 48:2127-2142
Ye defined a ring to be semiclean if every element of it can be written as a sum of a unit element and a periodic element. In this paper we generalize the notion of a semiclean ring to an almost se...
Autor:
P. V. Danchev, D. D. Anderson
Publikováno v:
Proceedings of the American Mathematical Society. 148:5087-5089
Publikováno v:
Communications in Algebra. 47:2711-2726
Let D be an integral domain and ⋆ a star operation defined on D. We say that D is a ⋆-power conductor domain (⋆-PCD) if for each pair a,b∈D\(0) and for each positive integer n we have Dan∩Dbn=((Da∩...
Publikováno v:
Communications in Algebra. 47:4713-4728
Jayaram and Tekir defined an R-module M, R is a commutative ring, to be “von Neumann regular” if for each m∈M, there exists an a∈R such that Rm=aM=a2M. Previously, Fieldhouse called M “regular” if ...
Publikováno v:
Communications in Algebra. 47:1742-1772
Publikováno v:
Journal of Algebra and Its Applications. 21
In this paper, we introduce ∗-almost independent rings of Krull type (∗-almost IRKTs) and ∗-almost generalized Krull domains (∗-almost GKDs) in the general theory of almost factoriality, neither of which need be integrally closed. This fills
Publikováno v:
Journal of Algebra and Its Applications. 21
Let [Formula: see text] be a commutative ring. A polynomial [Formula: see text] is an annihilating content (AC) polynomial if [Formula: see text] where [Formula: see text] and [Formula: see text] is a nonzerodivisor and [Formula: see text] is an EM-r