Zobrazeno 1 - 10
of 23
pro vyhledávání: '"D. Bhaskar Rao"'
Publikováno v:
International Journal of Current Microbiology and Applied Sciences. 6:1294-1299
Publikováno v:
Journal of vascular and interventional radiology : JVIR. 28(4)
Publikováno v:
Surgery Today. 41:266-270
This report presents the case of the emergency repair of a radiation-induced aortoesophageal fistula (AEF) with an endograft. The patient presented with multiple episodes of upper gastrointestinal bleeding. The fistula was discovered and treated in t
The latex is widely used in cosmetics, pharmaceuticals and food industry as in paper, textile and petroleum industries also. The present study was carried out to assess the potential antimicrobial activity of methanolic, ethanolic and chloroform extr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8de5aa23c1f4e1c383047ed4da1aef35
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sun-Yuan Kung, D. Bhaskar Rao
Publikováno v:
1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
The problem of retrieving narrowband or sinusoidal signals in additive noise, colored or white, is considered in this paper. A frequency-domain analysis leads to a notch filter estimator producing unbiased estimates of the sinusoidal frequencies. The
Autor:
Sun-Yuan Kung, D. Bhaskar Rao
Publikováno v:
1982 21st IEEE Conference on Decision and Control.
In this paper, the notch filter model developed for the retrieval of sinusoidal signals in noise is reexamined. A stochastic Gauss-Newton method is developed for adaptively estimating the parameters of the model. Various forms of simplifications (gra
Publikováno v:
The 22nd IEEE Conference on Decision and Control.
The problem addressed in this paper is that of realizing a minimum phase ARMA model for a stochastic process, from noisy measurements or estimates of its covariance lags. The new algorithm proposed in this paper optimizes the covariance approximation