Zobrazeno 1 - 8
of 8
pro vyhledávání: '"D K, Sodickson"'
Publikováno v:
NMR in biomedicine. 25(7)
We present high-resolution anatomical imaging of the cervical spinal cord in healthy volunteers at the ultrahigh field of 7 T with a prototype four-channel radiofrequency coil array, in comparison with 3-T imaging of the same subjects. Signal-to-nois
Publikováno v:
The Journal of Chemical Physics. 98:6742-6748
The effects of homonuclear dipole couplings may be reintroduced into magic angle spinning nuclear magnetic resonance (NMR) spectra by judiciously spaced π pulse trains. This recoupling phenomenon occurs over a wide range of chemical shift difference
Autor:
E E, Sigmund, G Y, Cho, S, Kim, M, Finn, M, Moccaldi, J H, Jensen, D K, Sodickson, J D, Goldberg, S, Formenti, L, Moy
Publikováno v:
Magnetic resonance in medicine. 65(5)
Diffusion-weighted imaging plays important roles in cancer diagnosis, monitoring, and treatment. Although most applications measure restricted diffusion by tumor cellularity, diffusion-weighted imaging is also sensitive to vascularity through the int
Autor:
D K, Sodickson
Publikováno v:
Magnetic resonance in medicine. 44(2)
The simultaneous acquisition of spatial harmonics (SMASH) imaging technique uses spatial information from an array of RF coils to substitute for omitted encoding gradient steps and thereby to accelerate MR image acquisition. Since SMASH image reconst
Autor:
M A, Griswold, P M, Jakob, Q, Chen, J W, Goldfarb, W J, Manning, R R, Edelman, D K, Sodickson
Publikováno v:
Magnetic resonance in medicine. 41(6)
Spatial resolution in single-shot imaging is limited by signal attenuation due to relaxation of transverse magnetization. This effect can be reduced by minimizing acquisition times through the use of short interecho spacings. However, the minimum int
Publikováno v:
Magnetic resonance in medicine. 41(5)
A general theory of signal-to-noise ratio (SNR) in simultaneous acquisition of spatial harmonics (SMASH) imaging is presented, and the predictions of the theory are verified in imaging experiments and in numerical simulations. In a SMASH image, multi
Publikováno v:
Magma (New York, N.Y.). 7(1)
Recently a new fast magnetic resonance imaging strategy, SMASH, has been described, which is based on partially parallel imaging with radiofrequency coil arrays. In this paper, an internal sensitivity calibration technique for the SMASH imaging metho
Autor:
Knoll F; F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN., Hammernik K; F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN., Zhang C; F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN., Moeller S; F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN., Pock T; F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN., Sodickson DK; F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN., Akçakaya M; F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN.
Publikováno v:
IEEE signal processing magazine [IEEE Signal Process Mag] 2020 Jan; Vol. 37 (1), pp. 128-140. Date of Electronic Publication: 2020 Jan 20.