Zobrazeno 1 - 10
of 260
pro vyhledávání: '"Dürsch A"'
Harnessing the local topography of the loss landscape is a central challenge in advanced optimization tasks. By accounting for the effect of potential parameter changes, we can alter the model more efficiently. Contrary to standard assumptions, we fi
Externí odkaz:
http://arxiv.org/abs/2411.16914
Autor:
Gershon, Talia, Seelam, Seetharami, Belgodere, Brian, Bonilla, Milton, Hoang, Lan, Barnett, Danny, Chung, I-Hsin, Mohan, Apoorve, Chen, Ming-Hung, Luo, Lixiang, Walkup, Robert, Evangelinos, Constantinos, Salaria, Shweta, Dombrowa, Marc, Park, Yoonho, Kayi, Apo, Schour, Liran, Alim, Alim, Sydney, Ali, Maniotis, Pavlos, Schares, Laurent, Metzler, Bernard, Karacali-Akyamac, Bengi, Wen, Sophia, Chiba, Tatsuhiro, Choochotkaew, Sunyanan, Yoshimura, Takeshi, Misale, Claudia, Elengikal, Tonia, Connor, Kevin O, Liu, Zhuoran, Molina, Richard, Schneidenbach, Lars, Caden, James, Laibinis, Christopher, Fonseca, Carlos, Tarasov, Vasily, Sundararaman, Swaminathan, Schmuck, Frank, Guthridge, Scott, Cohn, Jeremy, Eshel, Marc, Muench, Paul, Liu, Runyu, Pointer, William, Wyskida, Drew, Krull, Bob, Rose, Ray, Wolfe, Brent, Cornejo, William, Walter, John, Malone, Colm, Perucci, Clifford, Franco, Frank, Hinds, Nigel, Calio, Bob, Druyan, Pavel, Kilduff, Robert, Kienle, John, McStay, Connor, Figueroa, Andrew, Connolly, Matthew, Fost, Edie, Roma, Gina, Fonseca, Jake, Levy, Ido, Payne, Michele, Schenkel, Ryan, Malki, Amir, Schneider, Lion, Narkhede, Aniruddha, Moshref, Shekeba, Kisin, Alexandra, Dodin, Olga, Rippon, Bill, Wrieth, Henry, Ganci, John, Colino, Johnny, Habeger-Rose, Donna, Pandey, Rakesh, Gidh, Aditya, Gaur, Aditya, Patterson, Dennis, Salmani, Samsuddin, Varma, Rambilas, Rumana, Rumana, Sharma, Shubham, Mishra, Mayank, Panda, Rameswar, Prasad, Aditya, Stallone, Matt, Zhang, Gaoyuan, Shen, Yikang, Cox, David, Puri, Ruchir, Agrawal, Dakshi, Thorstensen, Drew, Belog, Joel, Tang, Brent, Gupta, Saurabh Kumar, Biswas, Amitabha, Maheshwari, Anup, Gampel, Eran, Van Patten, Jason, Runion, Matthew, Kaki, Sai, Bogin, Yigal, Reitz, Brian, Pritko, Steve, Najam, Shahan, Nambala, Surya, Chirra, Radhika, Welp, Rick, DiMitri, Frank, Telles, Felipe, Arvelo, Amilcar, Chu, King, Seminaro, Ed, Schram, Andrew, Eickhoff, Felix, Hanson, William, Mckeever, Eric, Joseph, Dinakaran, Chaudhary, Piyush, Shivam, Piyush, Chaudhary, Puneet, Jones, Wesley, Guthrie, Robert, Bostic, Chris, Islam, Rezaul, Duersch, Steve, Sawdon, Wayne, Lewars, John, Klos, Matthew, Spriggs, Michael, McMillan, Bill, Gao, George, Kamra, Ashish, Singh, Gaurav, Curry, Marc, Katarki, Tushar, Talerico, Joe, Shi, Zenghui, Malleni, Sai Sindhur, Gallen, Erwan
AI Infrastructure plays a key role in the speed and cost-competitiveness of developing and deploying advanced AI models. The current demand for powerful AI infrastructure for model training is driven by the emergence of generative AI and foundational
Externí odkaz:
http://arxiv.org/abs/2407.05467
Rutile Germanium Dioxide (r-GeO$_2$) has been identified as an ultrawide bandgap (UWBG) semiconductor recently, featuring a bandgap of 4.68 eV, comparable to Ga$_2$O$_3$ but offering bipolar dopability, higher electron mobility, higher thermal conduc
Externí odkaz:
http://arxiv.org/abs/2407.02682
Autor:
Duersch, Jed A.
Variational inference is an approximation framework for Bayesian inference that seeks to improve quantified uncertainty in predictions by optimizing a simplified distribution over parameters to stand in for the full posterior. Capturing model variati
Externí odkaz:
http://arxiv.org/abs/2301.08374
Publikováno v:
Nursing: Research and Reviews, Vol Volume 14, Pp 103-115 (2024)
Jasmin Bossert,1 Helena Dürsch,1 Bianca Korus,1 Ursula Boltenhagen,2 Mette Stie,3,4 Nadja Klafke1 1Department of General Practice and Health Service Research, University Hospital Heidelberg, Heidelberg, Germany; 2Department of Nursing Science, Unive
Externí odkaz:
https://doaj.org/article/7fabad00630b48c998b0452cad9cc6c5
In this paper, we address the problem of convergence of sequential variational inference filter (VIF) through the application of a robust variational objective and Hinf-norm based correction for a linear Gaussian system. As the dimension of state or
Externí odkaz:
http://arxiv.org/abs/2204.13089
Balancing model complexity against the information contained in observed data is the central challenge to learning. In order for complexity-efficient models to exist and be discoverable in high dimensions, we require a computational framework that re
Externí odkaz:
http://arxiv.org/abs/2203.08977
Autor:
Helena Dürsch BSc, Ursula Boltenhagen MSc, RN, Cornelia Mahler Professor, PhD, MA, RN, Stefanie Joos Professor,MD, Szecsenyi Joachim Professor, MD, MSc, Dipl-Soz, Nadja Klafke PhD, MA
Publikováno v:
Integrative Cancer Therapies, Vol 23 (2024)
Background: Many patients diagnosed with cancer use complementary and integrative healthcare (CIH) approaches to manage their cancer- and treatment-related symptoms and improve their well-being. Evidence suggests that counseling on CIH can improve he
Externí odkaz:
https://doaj.org/article/11733a9346584b819eb6211409c28cee
Publikováno v:
In Information Sciences April 2024 664
Autor:
Duersch, Jed A., Catanach, Thomas A.
Bayesian inference provides a uniquely rigorous approach to obtain principled justification for uncertainty in predictions, yet it is difficult to articulate suitably general prior belief in the machine learning context, where computational architect
Externí odkaz:
http://arxiv.org/abs/2103.02165