Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Dória, Cayo"'
Autor:
Dória, Cayo, Paiva, Nara
The goal of this work is to give new quantitative results about the distribution of semi-arithmetic hyperbolic surfaces in the moduli space of closed hyperbolic surfaces. We show that two coverings of genus $g$ of a fixed arithmetic surface $S$ are $
Externí odkaz:
http://arxiv.org/abs/2402.18676
Semi-arithmetic Fuchsian groups is a wide class of discrete groups of isometries of the hyperbolic plane which includes arithmetic Fuchsian groups, hyperbolic triangle groups, groups admitting a modular embedding, and others. We introduce a new geome
Externí odkaz:
http://arxiv.org/abs/2310.13151
In this article, for any $n\geq 4$ we construct a sequence of compact hyperbolic $n$-manifolds $\{M_i\}$ with number of systoles at least as $\mathrm{vol}(M_i)^{1+\frac{1}{3n(n+1)}-\epsilon}$ for any $\epsilon>0$. In dimension 3, the bound is improve
Externí odkaz:
http://arxiv.org/abs/2210.00154
Autor:
Cosac, Gregory, Dória, Cayo
In this article, we study geometric aspects of semi-arithmetic Riemann surfaces by means of number theory and hyperbolic geometry. First, we show the existence of infinitely many semi-arithmetic Riemann surfaces of various shapes and prove that their
Externí odkaz:
http://arxiv.org/abs/2004.13683
Autor:
Dória, Cayo, Murillo, Plinio G. P.
In this article we construct a sequence $\{M_i\}$ of non compact finite volume hyperbolic $3$-manifolds whose kissing number grows at least as $\mathrm{vol}(M_i)^{\frac{31}{27}-\epsilon}$ for any $\epsilon>0$. This extends a previous result due to Sc
Externí odkaz:
http://arxiv.org/abs/2003.01863
Autor:
Dória, Cayo, Paula, Gisele Teixeira
We study the action of Bianchi groups on the hyperbolic $3$-space $\mathbb{H}^3$. Given the standard fundamental domain for this action and any point in $\mathbb{H}^3,$ we show that there exists an element in the group which sends the given point int
Externí odkaz:
http://arxiv.org/abs/1910.03148
Autor:
Belolipetsky, Mikhail, Dória, Cayo
Publikováno v:
Groups, Geometry, and Dynamics. 14 (2020), 243-254
We show that any closed hyperbolic $3$-manifold $M$ has a co-final tower of covers $M_i \to M$ of degrees $n_i$ such that any subgroup of $\pi_1(M_i)$ generated by $k_i$ elements is free, where $k_i \ge n_i^C$ and $C = C(M) > 0$. Together with this r
Externí odkaz:
http://arxiv.org/abs/1803.05868
Autor:
Dória, Cayo
The purpose this article is to try to understand the mysterious coincidence between the asymptotic behavior of the volumes of the Moduli Space of closed hyperbolic surfaces of genus $g$ with respect to the Weil-Petersson metric and the asymptotic beh
Externí odkaz:
http://arxiv.org/abs/1710.04720
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Transactions of the American Mathematical Society; Feb2024, Vol. 377 Issue 2, p1247-1271, 25p