Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Díaz, Erwin"'
Autor:
Miña-Díaz, Erwin, Wennman, Aron
We study the asymptotic behavior of the Bergman orthogonal polynomials $(p_n)_{n=0}^{\infty}$ for a class of bounded simply connected domains $D$. The class is defined by the requirement that conformal maps $\varphi$ of $D$ onto the unit disk extend
Externí odkaz:
http://arxiv.org/abs/2404.09335
Autor:
López-García, Abey, Miña-Díaz, Erwin
Publikováno v:
J. Math. Anal. Appl. 538 (2024), 128401
For the Riesz and logarithmic potentials, we consider greedy energy sequences $(a_n)_{n=0}^\infty$ on the unit circle $S^1$, constructed in such a way that for every $n\geq 1$, the discrete potential generated by the first $n$ points $a_0,\ldots,a_{n
Externí odkaz:
http://arxiv.org/abs/2309.04387
Autor:
Miña-Díaz, Erwin
Publikováno v:
Journal of Approximation Theory 296 (2023) 105972
Let $w$ be a weight on the unit disk $\mathbb{D}$ having the form \[w(z)=|v(z)|^2\prod_{k=1}^s\left|\frac{z-a_k}{1-z\overline{a}_k}\right|^{m_k}\,,\quad m_k>-2,\ |a_k|<1,\] where $v$ is analytic and free of zeros in $\overline{\mathbb{D}}$, and let $
Externí odkaz:
http://arxiv.org/abs/2301.04749
Autor:
Miña-Díaz, Erwin
Publikováno v:
Anal.Math.Phys. 13, 58 (2023)
For a weight function in the unit disk which is the modulus of a finite product of powers of Blaschke factors, we give a canonical representation for the reproducing kernel of the corresponding weighted Bergman space in terms of the values of the ker
Externí odkaz:
http://arxiv.org/abs/2212.08118
Autor:
López-García, Abey, Miña-Díaz, Erwin
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 October 2024 538(2)
Autor:
Henegan, James, Miña-Díaz, Erwin
Publikováno v:
Journal of Approximation Theory, Volume 251, March 2020, 105347
Let $D$ be a domain obtained by removing, out of the unit disk $\{z:|z|<1\}$, finitely many mutually disjoint closed disks, and for each integer $n\geq 0$, let $P_n(z)=z^n+\cdots$ be the monic $n$th-degree polynomial satisfying the planar orthogonali
Externí odkaz:
http://arxiv.org/abs/1904.04810
Publikováno v:
Journal of Approximation Theory 243 (2019), 1-24
The sine process is a rigid point process on the real line, which means that for almost all configurations $X$, the number of points in an interval $I = [-R,R]$ is determined by the points of $X$ outside of $I$. In addition, the points in $I$ are an
Externí odkaz:
http://arxiv.org/abs/1703.02349
Autor:
López-García, Abey, Miña-Díaz, Erwin
Publikováno v:
Sbornik: Math. 209 (2018), 1051-1088
Polynomials $Q_n(z)$, $n=0,1,\ldots,$ that are multi-orthogonal with respect to a Nikishin system of $p\geq 1$ compactly supported measures over the star-like set of $p+1$ rays $S_+:=\{z\in \mathbb{C}: z^{p+1}\geq 0 \}$ are investigated. We prove tha
Externí odkaz:
http://arxiv.org/abs/1606.08047
Autor:
Henegan, James, Miña-Díaz, Erwin
Publikováno v:
In Journal of Approximation Theory March 2020 251
Autor:
Díaz, Erwin, Rodríguez, Alex W.
Publikováno v:
Jazz & Culture, 2020 Jan 01. 3(1), 71-81.
Externí odkaz:
https://www.jstor.org/stable/10.5406/jazzculture.3.1.0071