Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Dário Passos"'
Autor:
Dário Passos, Puneet Mishra
Publikováno v:
NIR news 33 (2022) 7-8
NIR news, 33(7-8), 9-12
NIR news, 33(7-8), 9-12
Deep learning for near-infrared spectral data is a recent topic of interest for near-infrared practitioners. In recent years, applications of deep learning are flourishing from analyses of point spectrometer data to hyperspectral image analysis. Howe
Autor:
Puneet Mishra, Dário Passos, Federico Marini, Junli Xu, Jose M. Amigo, Aoife A. Gowen, Jeroen J. Jansen, Alessandra Biancolillo, Jean Michel Roger, Douglas N. Rutledge, Alison Nordon
Publikováno v:
TrAC-Trends in Analytical Chemistry 157 (2022)
Trac-Trends in Analytical Chemistry, 157, 1-8
Trac-Trends in Analytical Chemistry, 157, pp. 1-8
TrAC-Trends in Analytical Chemistry, 157
Trac-Trends in Analytical Chemistry, 157, 1-8
Trac-Trends in Analytical Chemistry, 157, pp. 1-8
TrAC-Trends in Analytical Chemistry, 157
Deep learning (DL) is emerging as a new tool to model spectral data acquired in analytical experiments. Although applications are flourishing, there is also much interest currently observed in the scientific community on the use of DL for spectral da
A deep learning approach to improving spectral analysis of fruit quality under interseason variation
Autor:
Jie Yang, Xuan Luo, Xiaolei Zhang, Dário Passos, Lijuan Xie, Xiuqin Rao, Huirong Xu, K.C. Ting, Tao Lin, Yibin Ying
Model updating for developed calibrations is critical for robust spectral analysis in fruit quality control. Existing methods have limitations that usually need sufficient samples for model recalibration and are mainly designed for conventional linea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e537895704d9d4c6ad1709c1f5be0220
https://hdl.handle.net/10400.1/18594
https://hdl.handle.net/10400.1/18594
Publikováno v:
Internet of Things. IoT through a Multi-disciplinary Perspective ISBN: 9783031188718
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::298de6ac9f2718960f0301b2f85b9dd9
https://doi.org/10.1007/978-3-031-18872-5_3
https://doi.org/10.1007/978-3-031-18872-5_3
Publikováno v:
Chemometrics and Intelligent Laboratory Systems, 223
Chemometrics and Intelligent Laboratory Systems 223 (2022)
Chemometrics and Intelligent Laboratory Systems 223 (2022)
Deep spectral modelling for regression and classification is gaining popularity in the chemometrics domain. A major topic in the deep learning (DL) modelling of spectral data is the choice and optimization of the deep neural network architecture suit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fb62434825f2127250acda8f291b6cce
https://research.wur.nl/en/publications/a-tutorial-on-automatic-hyperparameter-tuning-of-deep-spectral-mo
https://research.wur.nl/en/publications/a-tutorial-on-automatic-hyperparameter-tuning-of-deep-spectral-mo
Publikováno v:
Communication and Intelligent Systems ISBN: 9789811921292
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3b5735038fe7e9b37847cb28a907bf2b
https://doi.org/10.1007/978-981-19-2130-8_34
https://doi.org/10.1007/978-981-19-2130-8_34
As non-climacteric, citrus fruit are only harvested at their optimal edible ripening stage. The usual approach followed by producers and packinghouses to establish the internal quality and ripening of citrus fruit is to collect fruit sets throughout
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94ada10bee683ea440afde7b43ea855f
http://www.intechopen.com/articles/show/title/nondestructive-assessment-of-citrus-fruit-quality-and-ripening-by-visible-near-infrared-reflectance-
http://www.intechopen.com/articles/show/title/nondestructive-assessment-of-citrus-fruit-quality-and-ripening-by-visible-near-infrared-reflectance-
Autor:
Dário Passos, Puneet Mishra
Publikováno v:
Infrared Physics and Technology 117 (2021)
Infrared Physics and Technology, 117
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Infrared Physics and Technology, 117
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Calibration transfer (CT) is required when a model developed on one instrument needs to be transferred and used on a new instrument. Several methods are available in the chemometrics domain to transfer the multivariate calibrations developed using mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb2c51a38b3434dec0e39abbf24e7acf
https://research.wur.nl/en/publications/deep-calibration-transfer-transferring-deep-learning-models-betwe
https://research.wur.nl/en/publications/deep-calibration-transfer-transferring-deep-learning-models-betwe
Autor:
Puneet Mishra, Dário Passos
Publikováno v:
Chemometrics and Intelligent Laboratory Systems, 215
Chemometrics and Intelligent Laboratory Systems 215 (2021)
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Chemometrics and Intelligent Laboratory Systems 215 (2021)
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Na modelagem de deep learning (DL) para dados espectrais, um grande desafio está relacionado à escolha da arquitetura de rede DL e à seleção dos melhores hiperparmetros. Muitas vezes, pequenas mudanças na arquitetura neural ou seu hiperparômet