Zobrazeno 1 - 10
of 309
pro vyhledávání: '"D, Savva"'
Publikováno v:
Physical Chemistry Chemical Physics. 25:5468-5478
Motivated by the need to perform large-scale kinetic Monte Carlo (KMC) simulations, in the context of unravelling complex phenomena such as catalyst reconstruction and pattern formation, we extend the work of Ravipati et al. [S. Ravipati, G. D. Savva
Autor:
Aikaterini S. Karampasi, Antonis D. Savva, Vasileios Ch. Korfiatis, Ioannis Kakkos, George K. Matsopoulos
Publikováno v:
Applied Sciences, Vol 11, Iss 13, p 6216 (2021)
Effective detection of autism spectrum disorder (ASD) is a complicated procedure, due to the hundreds of parameters suggested to be implicated in its etiology. As such, machine learning methods have been consistently applied to facilitate diagnosis,
Externí odkaz:
https://doaj.org/article/8efdfc153a6b437c813e49adfe3d9d0a
Kinetic Monte Carlo (KMC) simulations have been instrumental in multiscale catalysis studies, enabling the elucidation of the complex dynamics of heterogeneous catalysts and the prediction of macroscopic performance metrics, such as activity and sele
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de7c764ba1e47c8a47d7ddc8d55be1ce
https://zenodo.org/record/8135694
https://zenodo.org/record/8135694
Publikováno v:
Brain Connect
Introduction: The selection of an appropriate window size, window function, and functional connectivity (FC) metric in the sliding window method is not straightforward due to the absence of ground truth. Methods: A previously proposed wavelet-based m
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Giannis D. Savva, Michail Stamatakis
Publikováno v:
The Journal of Physical Chemistry A. 124:7843-7856
On-lattice kinetic Monte Carlo (KMC) is a computational method used to simulate (among others) physicochemical processes on catalytic surfaces. The KMC algorithm propagates the system through discrete configurations by selecting (with the use of rand
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Romain Réocreux, Giannis D. Savva, R. Guichard, Srikanth Ravipati, I. A. Christidi, Jens H. Nielsen, Michail Stamatakis
Despite the successful and ever widening adoption of kinetic Monte Carlo (KMC) simulations in the area of surface science and heterogeneous catalysis , the accessible length scales are still limited by the inherently sequential nature of the KMC fram
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8629463891e5be0676b7bb2471e10435
https://zenodo.org/record/5761359
https://zenodo.org/record/5761359
The purpose of the current study was to classify people with autism spectrum disorder (ASD) using resting state functional magnetic resonance imaging data. Toward this direction, data were retrieved from the Autism Brain Imaging Data Exchange initiat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::25e81973d54720a5aec9a8e01e776a58
https://doi.org/10.1016/b978-0-12-818466-0.00006-x
https://doi.org/10.1016/b978-0-12-818466-0.00006-x
Autor:
Hanna A. Alonim, Ramesa Shafi Bhat, Hillel D. Braude, Undurti N. Das, Jonathan Delafield-Butt, Barbara A. Demeneix, Afaf El-Ansary, Tatyana El-Kour, Jean-Baptiste Fini, Gilbert M. Foley, Stephanny Freeman, Ira Glovinsky, Aikaterini S. Karampasi, Marinos Kyriakopoulos, Michelle Leemans, Ido Lieberman, George K. Matsopoulos, Magda Mostafa, Isabelle Mueller, Majia H. Nadesan, Natalia Neophytou, Nina Newman, Melissa Olive, M.A. Ovchinnikova, Neophytos Papaneophytou, Tanya Paparella, Ivanka Pejić, Sandra Pretorius, O.G. Safonicheva, Ruby Moye Salazar, Antonis D. Savva, Giora Scheingesicht, Danny Tayar, Gil Tippy, Colwyn Trevarthen, Ed Tronick, Alisa Vig, Serena Wieder
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::20ba50079eeb402df9c1f456efa9e5c8
https://doi.org/10.1016/b978-0-12-818466-0.01002-9
https://doi.org/10.1016/b978-0-12-818466-0.01002-9