Zobrazeno 1 - 10
of 246
pro vyhledávání: '"Czygrinow, A."'
Autor:
Czygrinow, Andrzej, Yuan, Xiaofan
Let $G = (V, E)$ be a graph on $n$ vertices, and let $c: E \to P$, where $P$ is a set of colors. Let $\delta^c(G) = \min_{v \in V} \{ d^{c}(v) \}$ where $d^c(v)$ is the number of colors on edges incident to a vertex $v$ of $G$. In 2011, Fujita and Ma
Externí odkaz:
http://arxiv.org/abs/2411.09095
Let $G = (V,E)$ be an $n$-vertex graph and let $c: E \to \mathbb{N}$ be a coloring of its edges. Let $d^c(v)$ be the number of distinct colors on the edges at $v \in V$ and let $\delta^c(G) = \min_{v \in V} \{ d^{c}(v) \}$. H. Li proved that $\delta^
Externí odkaz:
http://arxiv.org/abs/2407.08098
Publikováno v:
In Theoretical Computer Science 27 October 2024 1014
We prove that a simple distributed algorithm finds a constant approximation of an optimal distance-$k$ dominating set in graphs with no $K_{2,t}$-minor. The algorithm runs in a constant number of rounds. We further show how this procedure can be used
Externí odkaz:
http://arxiv.org/abs/2203.03229
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $G = (V, E)$ be an $n$-vertex edge-colored graph. In 2013, H. Li proved that if every vertex $v \in V$ is incident to at least $(n+1)/2$ distinctly colored edges, then $G$ admits a rainbow triangle. We establish a corresponding result for fixed e
Externí odkaz:
http://arxiv.org/abs/1912.02049
Publikováno v:
European Journal of Combinatorics, Volume 94, May 2021, 103316
Let $G = (V, E)$ be an $n$-vertex edge-colored graph. In 2013, H. Li proved that if every vertex $v \in V$ is incident to at least $(n+1)/2$ distinctly colored edges, then $G$ admits a rainbow triangle. We prove that the same hypothesis ensures a rai
Externí odkaz:
http://arxiv.org/abs/1910.03745
We will show that for $\alpha>0$ there is $n_0$ such that if $G$ is a graph on $n\geq n_0$ vertices such that $\alpha n< \delta(G)< (n-1)/2$, then for every $n_1+n_2+\cdots +n_l= \delta(G)$, $G$ contains a disjoint union of $C_{2n_1},C_{2n_2}, \dots,
Externí odkaz:
http://arxiv.org/abs/1806.09651
Consider a distribution of pebbles on a connected graph $G$. A pebbling move removes two pebbles from a vertex and places one to an adjacent vertex. A vertex is reachable under a pebbling distribution if it has a pebble after the application of a seq
Externí odkaz:
http://arxiv.org/abs/1804.03717
Publikováno v:
In Theoretical Computer Science 19 May 2022 916:22-30