Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Czes Kosniowski"'
Autor:
Czes Kosniowski
The theory of transformation groups studies symmetries of various mathematical objects such as topological spaces, manifolds, polyhedra and function spaces. It is thus a central concept in many branches of mathematics. This volume contains 25 of the
Autor:
Czes Kosniowski
Publikováno v:
Journal of the London Mathematical Society. :179-186
Autor:
Czes Kosniowski
Publikováno v:
Mathematische Annalen. 242:59-68
We show that in equivariant bordism theory using families of slice types it is possible for the theory to vanish. In fact we shall describe, for each finite abelian group G, families ~ of G slice types so that the theory G ~9 l , [ ~ ] is zero. In ot
Autor:
Czes Kosniowski, John H. Ewing
Publikováno v:
Bulletin of the London Mathematical Society. 16:295-302
Autor:
Czes Kosniowski
Publikováno v:
Transactions of the American Mathematical Society. 219:225-234
This paper gives an elementary proof of the result that equivariant stable homotopy is the same as equivariant framed bordism.
Autor:
Czes Kosniowski
Publikováno v:
A First Course in Algebraic Topology. :100-109
Publikováno v:
Mathematische Annalen. 242:21-26
Autor:
Czes Kosniowski
Publikováno v:
Mathematische Zeitschrift. 149:121-130
Autor:
Czes Kosniowski, Mahgoub Yahia
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 26:97-105
The purpose of this paper is to describe , the bordism module of unitary T-manifolds, where T denotes the circle group S1. We give both an algebraic and a geometric description. The algebraic result iswhere I = (i(1), i(2),…i(2n)) runs through all
Autor:
Czes Kosniowski
Publikováno v:
The Mathematical Gazette. 62:233-245
Most school mathematics courses nowadays include a study of symmetry in the euclidean sense—isometries in 2- or 3-dimensional euclidean space which map a figure to itself. This article explores the theme of symmetry in a more general, topological s