Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Cyril Marzouk"'
We investigate the structure of large uniform random maps with $n$ edges, $\mathrm{f}_n$ faces, and with genus $\mathrm{g}_n$ in the so-called sparse case, where the ratio between the number vertices and edges tends to $1$. We focus on two regimes: t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::010daf23b2378524788e1b02a6b8fadc
Autor:
Nicolas Curien, Cyril Marzouk
Publikováno v:
Probability and Mathematical Physics
Probability and Mathematical Physics, MSP, 2021
Probability and Mathematical Physics, MSP, 2021
The infinite discrete stable Boltzmann maps are generalisations of the well-known Uniform Infinite Planar Quadrangulation in the case where large degree faces are allowed. We show that the simple random walk on these random lattices is always subdiff
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::415a8d96bab3ce9b4df242b2c737110c
https://hal-universite-paris-saclay.archives-ouvertes.fr/hal-03287273
https://hal-universite-paris-saclay.archives-ouvertes.fr/hal-03287273
Autor:
Cyril Marzouk, Nicolas Curien
Publikováno v:
Bulletin de la société mathématique de France
Bulletin de la société mathématique de France, Société Mathématique de France, 2020, 148 (4), pp.709-732. ⟨10.24033/bsmf.2821⟩
Bulletin de la société mathématique de France, 2020, 148 (4), pp.709-732. ⟨10.24033/bsmf.2821⟩
Bulletin de la Société mathématique de France
Bulletin de la société mathématique de France, Société Mathématique de France, 2020, 148 (4), pp.709-732. ⟨10.24033/bsmf.2821⟩
Bulletin de la société mathématique de France, 2020, 148 (4), pp.709-732. ⟨10.24033/bsmf.2821⟩
Bulletin de la Société mathématique de France
The infinite discrete stable Boltzmann maps are "heavy-tailed" generalisations of the well-known Uniform Infinite Planar Quadrangulation. Very efficient tools to study these objects are Markovian step-by-step explorations of the lattice called peelin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5870fb587a06421726041669acce8ba9
Autor:
Cyril Marzouk
Publikováno v:
ALEA : Latin American Journal of Probability and Mathematical Statistics
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2018, 15, pp.1089-1122. ⟨10.30757/ALEA.v15-40⟩
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2018, 15, pp.1089-1122. ⟨10.30757/ALEA.v15-40⟩
We discuss the asymptotic behaviour of random critical Boltzmann planar maps in which the degree of a typical face belongs to the domain of attraction of a stable law with index $\alpha \in (1,2]$. We prove that when conditioning such maps to have $n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a51eadfb0efdd145f8d7b6d1c4f0403c
http://arxiv.org/abs/1803.07899
http://arxiv.org/abs/1803.07899
Autor:
Nicolas Curien, Cyril Marzouk
Publikováno v:
Electronic Communications in Probability
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2018, 23 (18), 11 p. ⟨10.1214/18-ECP123⟩
Electron. Commun. Probab.
Electronic Communications in Probability, 2018, 23 (18), 11 p. ⟨10.1214/18-ECP123⟩
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2018, 23 (18), 11 p. ⟨10.1214/18-ECP123⟩
Electron. Commun. Probab.
Electronic Communications in Probability, 2018, 23 (18), 11 p. ⟨10.1214/18-ECP123⟩
The peeling process is an algorithmic procedure that discovers a random planar map step by step. In generic cases such as the UIPT or the UIPQ, it is known [Curien & Le Gall, Scaling limits for the peeling process on random maps, Ann. Inst. Henri Poi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::20eee8809978b17a2df972d8d71350d3
https://hal.archives-ouvertes.fr/hal-01719797/file/Sous_diff_UIPQ.pdf
https://hal.archives-ouvertes.fr/hal-01719797/file/Sous_diff_UIPQ.pdf
Autor:
Cyril Marzouk
Publikováno v:
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (1), pp.502-523. ⟨10.1214/19-AIHP970⟩
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 1 (2020), 502-523
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (1), pp.502-523. ⟨10.1214/19-AIHP970⟩
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 1 (2020), 502-523
We consider so-called discrete snakes obtained from size-conditioned critical Bienaym\'e-Galton-Watson trees by assigning to each node a random spatial position in such a way that the increments along each edge are i.i.d. When the offspring distribut
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8bc78fd7a001d7d879d7ba6b9e80015
Autor:
Cyril Marzouk, Igor Kortchemski
Publikováno v:
Combinatorics, Probability and Computing
Combinatorics, Probability and Computing, Cambridge University Press (CUP), 2017, 26 (4), pp.560-592. ⟨10.1017/S0963548317000050⟩
Combinatorics Probability and Computing
Combinatorics, Probability and Computing, Cambridge University Press (CUP), 2017, 26 (4), pp.560-592. ⟨10.1017/S0963548317000050⟩
Combinatorics Probability and Computing
We introduce and study the model of simply generated non-crossing partitions, which are, roughly speaking, chosen at random according to a sequence of weights. This framework encompasses the particular case of uniform non-crossing partitions with con
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc15a41b2e3cce8056ce5d9feedb6255
https://hal.archives-ouvertes.fr/hal-01199288/file/primes200.pdf
https://hal.archives-ouvertes.fr/hal-01199288/file/primes200.pdf
Publikováno v:
Journal de l'École polytechnique — Mathématiques
Journal de l'École polytechnique — Mathématiques, 2018, 5, pp.749-791. ⟨10.5802/jep.82⟩
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2018, 5, pp.749-791. ⟨10.5802/jep.82⟩
Journal de l'École polytechnique — Mathématiques, 2018, 5, pp.749-791. ⟨10.5802/jep.82⟩
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2018, 5, pp.749-791. ⟨10.5802/jep.82⟩
We study the geometry of infinite random Boltzmann planar maps having weight of polynomial decay of order $k^{-2}$ for each vertex of degree $k$. These correspond to the dual of the discrete "stable maps" of Le Gall and Miermont [Scaling limits of ra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6e60617cf575776044a089617e8d094
http://arxiv.org/abs/1704.05297
http://arxiv.org/abs/1704.05297
Autor:
Cyril Marzouk
Publikováno v:
Ann. Inst. H. Poincaré Probab. Statist. 52, no. 1 (2016), 355-375
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2016, 52 (1), pp.355-375. ⟨10.1214/14-AIHP640⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2016, 52 (1), pp.355-375. ⟨10.1214/14-AIHP640⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2016, 52 (1), pp.355-375
Annales de l'Institut Henri Poincaré
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2016, 52 (1), pp.355-375. ⟨10.1214/14-AIHP640⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2016, 52 (1), pp.355-375. ⟨10.1214/14-AIHP640⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2016, 52 (1), pp.355-375
Annales de l'Institut Henri Poincaré
We continue the study initiated by Jean Bertoin in 2012 of a random dynamics on the edges of a uniform Cayley tree with $n$ vertices in which, successively, each edge is either set on fire with some fixed probability $p_n$ or fireproof with probabili
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a694d1fc43987d4e779d935a930eb1aa
http://projecteuclid.org/euclid.aihp/1452089272
http://projecteuclid.org/euclid.aihp/1452089272
Autor:
Cyril Marzouk
Publikováno v:
Random Structures and Algorithms
Random Structures and Algorithms, Wiley, 2018, 53 (3), pp.448-503. ⟨10.1002/rsa.20773⟩
Random Structures and Algorithms, Wiley, 2018, 53 (3), pp.448-503. ⟨10.1002/rsa.20773⟩
We study the asymptotic behaviour of uniform random maps with a prescribed face-degree sequence, in the bipartite case, as the number of faces tends to infinity. Under mild assumptions, we show that, properly rescaled, such maps converge in distribut
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14693c87909d10a5181768e965eef989