Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Curvature ellipse"'
Publikováno v:
An International Journal of Optimization and Control: Theories & Applications, Vol 7, Iss 1, Pp 83-89 (2016)
In the present study, we consider canal surfaces imbedded in an Euclidean space of four dimensions. The curvature properties of these surface are investigated with respect to the variation of the normal vectors and curvature ellipse. We also give som
Externí odkaz:
https://doaj.org/article/98b3b5537fe7437281e40ca971773389
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 20, Iss 1, Pp 41-54 (2012)
In the present study we calculate the coefficients of the second fundamental form and curvature ellipse of spherical product surfaces in E4. Otsuki rotational surfaces and Ganchev-Milousheva rotational surfaces are the special type of spherical produ
Externí odkaz:
https://doaj.org/article/301750234f7f4b5a87491f4621f67a77
Autor:
Ganchev Georgi, Milousheva Velichka
Publikováno v:
Open Mathematics, Vol 8, Iss 6, Pp 993-1008 (2010)
Externí odkaz:
https://doaj.org/article/099fe542bc154af683ba08e38530b35e
Autor:
Sezgin Büyükkütük, Günay Öztürk
Publikováno v:
Volume: 1, Issue: 1 15-20
Kocaeli Journal of Science and Engineering
Kocaeli Journal of Science and Engineering
In this paper, we consider a factorable surface in Euclidean E^4 with its curvature ellipse. We classify the origin of the normal space of such a surface according to whether it is hyperbolic, parabolic, or elliptic. Further, we give the necessary an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e240dd7496c52f9fba9c388a5a7e280
https://dergipark.org.tr/tr/pub/kojose/issue/37201/403665
https://dergipark.org.tr/tr/pub/kojose/issue/37201/403665
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
An International Journal of Optimization and Control: Theories & Applications, Vol 7, Iss 1, Pp 83-89 (2016)
Bayram, Bengü (Balikesir Author)
In this paper, we study canal surfaces imbedded in 4-dimensional EuclideanspaceE4. We investigate these surface curvature properties with respect to thevariation of the normal vectors and ellipse of curvature. S
In this paper, we study canal surfaces imbedded in 4-dimensional EuclideanspaceE4. We investigate these surface curvature properties with respect to thevariation of the normal vectors and ellipse of curvature. S
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66e8c700475b6d2900ace3a5c436b9a7
https://hdl.handle.net/20.500.12462/3735
https://hdl.handle.net/20.500.12462/3735
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
instname
Based on the fact that conformal maps preserve contacts of surfaces with hyperspheres, we introduce the concept of strong principal lines on surfaces in ℝ4 and obtain conformally invariant differential 1-forms along them. The zeros of these 1-forms
Autor:
Georgi Ganchev, Velichka Milousheva
Publikováno v:
Open Mathematics, Vol 8, Iss 6, Pp 993-1008 (2010)
In the tangent plane at any point of a surface in the four-dimensional Euclidean space we consider an invariant linear map of Weingarten-type and find a geometrically determined moving frame field. Writing derivative formulas of Frenet-type for this
Autor:
Makoto Sakaki
Publikováno v:
Bull. Belg. Math. Soc. Simon Stevin 22, no. 1 (2015), 165-172
We discuss the curvature ellipse of minimal surfaces in the product space $N^3(c)\times R$, where $N^3(c)$ is the $3$-dimensional simply connected space form of constant curvature $c$.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::03eee68a32034dcdbfc1601c1a9ac450
http://projecteuclid.org/euclid.bbms/1426856866
http://projecteuclid.org/euclid.bbms/1426856866