Zobrazeno 1 - 10
of 2 672
pro vyhledávání: '"Curran, Michael A"'
Autor:
Curran, Michael J.
In previous work, the author gave upper bounds for the shifted moments of the zeta function \[ M_{{\alpha},{\beta}}(T) = \int_T^{2T} \prod_{k = 1}^m |\zeta(\tfrac{1}{2} + i (t + \alpha_k))|^{2 \beta_k} dt \] introduced by Chandee, where ${\alpha} = {
Externí odkaz:
http://arxiv.org/abs/2405.08725
Autor:
Curran, Michael J., Heycock, André
In previous work, the first author obtained conjecturally sharp upper bounds for the joint moments of the $(2k-2h)^{\text{th}}$ power of the Riemann zeta function with the $2h^{\text{th}}$ power of its derivative on the critical line in the range $1\
Externí odkaz:
http://arxiv.org/abs/2403.00902
Autor:
Curran, Michael J.
Assuming the Riemann hypothesis, we investigate the shifted moments of the zeta function \[ M_{\alpha,{\beta}}(T) = \int_T^{2T} \prod_{k = 1}^m |\zeta(\tfrac{1}{2} + i (t + \alpha_k))|^{2 \beta_k} dt \] introduced by Chandee, where ${\alpha} = {\alph
Externí odkaz:
http://arxiv.org/abs/2303.10123
Autor:
Curran, Michael J.
Moments of moments of the Riemann zeta function, defined by \[ \text{MoM}_T (k,\beta) = \frac{1}{T} \int_T^{2T} \left( \int_{ |h|\leq (\log T)^\theta}|\zeta(\tfrac{1}{2} + i t + ih)|^{2\beta} dh \right)^k dt \] where $k,\beta \geq 0$ and $\theta > -1
Externí odkaz:
http://arxiv.org/abs/2301.10634
Autor:
Borushko, Matthew C.
Publikováno v:
The Wordsworth Circle, 2013 Oct 01. 44(4), 194-196.
Externí odkaz:
https://www.jstor.org/stable/24044457
Autor:
Wolfson, Susan J.
Publikováno v:
Keats-Shelley Journal, 2013 Jan 01. 62, 133-134.
Externí odkaz:
https://www.jstor.org/stable/24396084
Autor:
Curran, Michael F.1 (AUTHOR) mike@abnovaecology.com, Allison, Jasmine2 (AUTHOR), Robinson, Timothy J.3 (AUTHOR), Robertson, Blair L.4 (AUTHOR), Knudson, Alexander H.5 (AUTHOR), Bott, Bee M. M.1,6 (AUTHOR), Bower, Steven1 (AUTHOR), Saleh, Bobby M.2 (AUTHOR)
Publikováno v:
Diversity (14242818). Jun2024, Vol. 16 Issue 6, p324. 13p.
Autor:
Curran, Michael J., Frechette, Claire, Yost-Wolff, Calvin, Zhang, Sylvester W., Zhang, Valerie
We introduce a solvable lattice model for supersymmetric LLT polynomials, also known as super LLT polynomials, based upon particle interactions in super n-ribbon tableaux. Using operators on a Fock space, we prove a Cauchy identity for super LLT poly
Externí odkaz:
http://arxiv.org/abs/2110.07597
Autor:
Curran, Michael G., Feeney, Kaylem M., Murphy, Evelyn P., Faustino, Angela S.C., Kearns, Stephen R.
Publikováno v:
In Foot and Ankle Surgery July 2024 30(5):411-416
Publikováno v:
In Foot and Ankle Surgery June 2024 30(4):325-330