Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Cullen, Mike"'
Autor:
Egan, Charlie P., Bourne, David P., Cotter, Colin J., Cullen, Mike J. P., Pelloni, Beatrice, Roper, Steven M., Wilkinson, Mark
Publikováno v:
Journal of Computational Physics, Volume 469, 111542 (2022)
We present a new implementation of the geometric method of Cullen & Purser (1984) for solving the semi-geostrophic Eady slice equations which model large scale atmospheric flows and frontogenesis. The geometric method is a Lagrangian discretisation,
Externí odkaz:
http://arxiv.org/abs/2203.04903
The semi-geostrophic equations are used widely in the modelling of large-scale atmospheric flows. In this note, we prove the global existence of weak solutions of the incompressible semi-geostrophic equations, in geostrophic coordinates, in a three-d
Externí odkaz:
http://arxiv.org/abs/1811.03926
Autor:
Cullen, Mike
Publikováno v:
Planning News (1329-2862). Sep/Oct2024, Vol. 50 Issue 5, p13-14. 2p.
Autor:
Bokhove, Onno, Cheng, Bin, Dedner, Andreas, Esler, Gavin, Norbury, John, Turner, Matthew R., Vanneste, Jacques, Cullen, Mike
The group focused on a model problem of idealised moist air convection in a single column of atmosphere. Height, temperature and moisture variables were chosen to simplify the mathematical representation (along the lines of the Boussinesq approximati
Externí odkaz:
http://arxiv.org/abs/1608.05245
Autor:
Gross, Markus, Wan, Hui, Rasch, Philip J., Caldwell, Peter M., Williamson, David L., Klocke, Daniel, Jablonowski, Christiane, Thatcher, Diana R., Wood, Nigel, Cullen, Mike, Beare, Bob, Willett, Martin, Lemarié, Florian, Blayo, Eric, Malardel, Sylvie, Termonia, Piet, Gassmann, Almut, Lauritzen, Peter H., Johansen, Hans, Zarzycki, Colin M., Sakaguchi, Koichi, Leung, Ruby
Geophysical models of the atmosphere and ocean invariably involve parameterizations. These represent two distinct areas: Subgrid processes that the model cannot resolve, and diabatic sources in the equations, due to radiation for example. Hence, coup
Externí odkaz:
http://arxiv.org/abs/1605.06480
An equation of Monge-Amp\`ere type has, for the first time, been solved numerically on the surface of the sphere in order to generate optimally transported (OT) meshes, equidistributed with respect to a monitor function. Optimal transport generates m
Externí odkaz:
http://arxiv.org/abs/1512.02935
Autor:
Cullen, Mike1
Publikováno v:
Planning News (1329-2862). Jul/Aug2024, Vol. 50 Issue 4, p13-14. 2p.
Autor:
Cullen, Mike, Sedjro, Marc
In this work, we consider a model of forced axisymmetric flows which is derived from the inviscid Boussinesq equations. What makes these equations unusual is the boundary conditions they are expected to satisfy and the fact that the boundary is part
Externí odkaz:
http://arxiv.org/abs/1311.3521
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.