Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Cui, Weideng"'
We prove that the q-Schur algebras of finite type introduced in [LW22] are cellular in the sense of Graham and Lehrer, which is a generalization of Geck's theorem on the cellularity of Hecke algebras of finite type. Moreover, we study special modules
Externí odkaz:
http://arxiv.org/abs/2305.14633
Autor:
Cui, Weideng
We provide a combinatorial characterization of two-sided cells in modified $\imath$quantum groups of type AIII. Our approach is to lift a corresponding description of two-sided cells in $\jmath$-Schur algebras associated to Iwahori--Hecke algebras of
Externí odkaz:
http://arxiv.org/abs/2207.06178
Autor:
Cui, Weideng, Shen, Yaolong
Expanding the classical work of Kazhdan-Lusztig, we construct a bar involution and canonical bases on the $q$-Brauer algebra introduced by Wenzl. We define explicit actions of the $q$-Brauer algebra on the tensor spaces, and formulate $\imath$Schur d
Externí odkaz:
http://arxiv.org/abs/2203.02082
We develop algebraic and geometrical approaches toward canonical bases for affine q-Schur algebras of arbitrary type introduced in this paper. A duality between an affine q-Schur algebra and a corresponding affine Hecke algebra is established. We int
Externí odkaz:
http://arxiv.org/abs/2004.00193
Autor:
Cui, Weideng
Publikováno v:
In Journal of Algebra 1 April 2023 619:707-743
Autor:
Cui, Weideng
In [Lu6] Lusztig defined a certain algebra $H,$ which is a direct sum of various algebras $H_{\mathfrak{o}}.$ We establish an explicit algebra isomorphism between each algebra $H_{\mathfrak{o}}$ and some matrix algebra with coefficients in the tensor
Externí odkaz:
http://arxiv.org/abs/1708.01835
Autor:
Cui, Weideng
Hecke-Hopf algebras were defined by A. Berenstein and D. Kazhdan. We give an explicit presentation of an Hecke-Hopf algebra when the parameter $m_{ij},$ associated to any two distinct vertices $i$ and $j$ in the presentation of a Coxeter group, equal
Externí odkaz:
http://arxiv.org/abs/1707.05563
Publikováno v:
Israel Journal of Mathematics; Oct2024, Vol. 263 Issue 1, p129-167, 39p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cui, Weideng
We give two different approaches to classifying the simple modules of $0$-Yokonuma-Hecke algebras $Y_{r,n}(0)$ over an algebraically closed field of characteristic $p$ such that $p$ does not divide $r.$ Using the isomorphism between the $0$-Yokonuma-
Externí odkaz:
http://arxiv.org/abs/1611.03265