Zobrazeno 1 - 10
of 714
pro vyhledávání: '"Cufi, P."'
Publikováno v:
Geocarto International, Vol 39, Iss 1 (2024)
In this article, a multi-source data-based method for urban-rural fringe extraction is proposed to solve the problem of insufficiently accurate division of urban-rural fringe, which can conveniently and accurately realise the extraction of the area o
Externí odkaz:
https://doaj.org/article/7aec8e60dfcf49789447b72c54dbc1fd
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We establish some relations between the perimeter, the area and the visual angle of a planar compact convex set. Our first result states that Crofton's formula is the unique universal formula relating the visual angle, length and area. After that we
Externí odkaz:
http://arxiv.org/abs/2404.08349
Autor:
Cufí-Cabré, Clara, Fontich, Ernest
We consider analytic maps and vector fields defined in $\mathbb{R}^2 \times \mathbb{T}^d$, having a $d$-dimensional invariant torus $\mathcal{T}$. The map (resp. vector field) restricted to $\mathcal{T}$ defines a rotation of frequency $\omega$, and
Externí odkaz:
http://arxiv.org/abs/2310.05630
Publikováno v:
Pacific J. Math. 326 (2023) 285-300
Consider a standard Cantor set in the plane of Hausdorff dimension 1. If the linear density of the associated measure $\mu$ vanishes, then the set of points where the principal value of the Cauchy singular integral of $\mu$ exists has Hausdorff dimen
Externí odkaz:
http://arxiv.org/abs/2306.05015
Here we analyze three dimensional analogues of the classical Crofton's formula for planar compact convex sets. In this formula a fundamental role is played by the visual angle of the convex set from an exterior point. A generalization of the visual a
Externí odkaz:
http://arxiv.org/abs/2303.03255
Publikováno v:
Southern Jewish Life; Aug2024, Vol. R1 Issue 3, p12-12, 1/9p
Autor:
Cufí, Julià, Donaire, Juan J.
We modify the proof of the basic lemma of a paper of Saks and Zygmund on additive functions of rectangles.
Externí odkaz:
http://arxiv.org/abs/2207.06730
Autor:
Cufí-Cabré, Clara, Llibre, Jaume
Publikováno v:
Pacific J. Math. 324 (2023) 249-263
It is well known that linear vector fields defined in $\mathbb{R}^n$ can not have limit cycles, but this is not the case for linear vector fields defined in other manifolds. We study the existence of limit cycles bifurcating from a continuum of perio
Externí odkaz:
http://arxiv.org/abs/2207.07006
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.