Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Cueto Javier"'
This work revolves around the rigorous asymptotic analysis of models in nonlocal hyperelasticity. The corresponding variational problems involve integral functionals depending on nonlocal gradients with a finite interaction range $\delta$, called the
Externí odkaz:
http://arxiv.org/abs/2404.18509
In this work we further develop a nonlocal calculus theory (initially introduced in [5]) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elas
Externí odkaz:
http://arxiv.org/abs/2311.05465
The center of interest in this work are variational problems with integral functionals depending on special nonlocal gradients. The latter correspond to truncated versions of the Riesz fractional gradient, as introduced in [Bellido, Cueto & Mora-Corr
Externí odkaz:
http://arxiv.org/abs/2302.05569
We develop a theory of existence of minimizers of energy functionals in vectorial problems based on a nonlocal gradient under Dirichlet boundary conditions. The model shares many features with the peridynamics model and is also applicable to nonlocal
Externí odkaz:
http://arxiv.org/abs/2211.02640
In this paper we develop a new set of results based on a nonlocal gradient jointly inspired by the Riesz s-fractional gradient and Peridynamics, in the sense that its integration domain depends on a ball of radius delta > 0 (horizon of interaction am
Externí odkaz:
http://arxiv.org/abs/2201.08793
Publikováno v:
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 1-105 (2023)
In this article, we develop a new set of results based on a non-local gradient jointly inspired by the Riesz ss-fractional gradient and peridynamics, in the sense that its integration domain depends on a ball of radius δ>0\delta \gt 0 (horizon of in
Externí odkaz:
https://doaj.org/article/0264f8a27e5c43529518da55b61b8fe4
In this paper we study localization properties of the Riesz $s$-fractional gradient $D^s u$ of a vectorial function $u$ as $s \nearrow 1$. The natural space to work with $s$-fractional gradients is the Bessel space $H^{s,p}$ for $0 < s < 1$ and $1 <
Externí odkaz:
http://arxiv.org/abs/2005.10753
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we address nonlocal vector variational principles obtained by substitution of the classical gradient by the Riesz fractional gradient. We show the existence of minimizers in Bessel fractional spaces under the main assumption of polyconv
Externí odkaz:
http://arxiv.org/abs/1812.05848
Publikováno v:
Advances in Calculus of Variations; Jul2024, Vol. 17 Issue 3, p1039-1055, 17p