Zobrazeno 1 - 10
of 3 817
pro vyhledávání: '"Csiszar, A"'
Our main goal in this paper is to quantitatively compare the performance of classical methods to XGBoost and convolutional neural networks in a parameter estimation problem for epidemic spread. As we use flexible two-layer random graphs as the underl
Externí odkaz:
http://arxiv.org/abs/2407.07118
In this paper, we study the spread of a classical SIR process on a two-layer random network, where the first layer represents the households, while the second layer models the contacts outside the households by a random scale-free graph. We build a t
Externí odkaz:
http://arxiv.org/abs/2303.02195
Autor:
Csiszár, Orsolya, Pusztaházi, Luca Sára, Dénes-Fazakas, Lehel, Gashler, Michael S., Kreinovich, Vladik, Csiszár, Gábor
We present a deep learning model for finding human-understandable connections between input features. Our approach uses a parameterized, differentiable activation function, based on the theoretical background of nilpotent fuzzy logic and multi-criter
Externí odkaz:
http://arxiv.org/abs/2205.06547
Autor:
Cade A. Huston, Madison Milan, Michaela L. Vance, Marisa A. Bickel, Lauren R. Miller, Sharon Negri, Clara Hibbs, Hannah Vaden, Lindsay Hayes, Anna Csiszar, Zoltan Ungvari, Andriy Yabluchanskiy, Stefano Tarantini, Shannon M. Conley
Publikováno v:
Experimental Gerontology, Vol 194, Iss , Pp 112510- (2024)
Dietary modifications such as caloric restriction (CR) and intermittent fasting (IF) have gained popularity due to their proven health benefits in aged populations. In time restricted feeding (TRF), a form of intermittent fasting, the amount of time
Externí odkaz:
https://doaj.org/article/6cad12359cbe4af8a0ae1bee8f8883c4
Over the past few years, deep neural networks have shown excellent results in multiple tasks, however, there is still an increasing need to address the problem of interpretability to improve model transparency, performance, and safety. Achieving eXpl
Externí odkaz:
http://arxiv.org/abs/2010.08760
Publikováno v:
IEEE Access, Vol 12, Pp 168626-168644 (2024)
Activation functions are pivotal in neural networks, determining the output of each neuron. Traditionally, functions like sigmoid and ReLU have been static and deterministic. However, the introduction of parametric activation functions represents a s
Externí odkaz:
https://doaj.org/article/802306dd6ad94dd18bfeccda29d1e73d
Autor:
Farkas, Csaba, Gál, László, Csiszár, András, Grennerat, Vincent, Jeannin, Pierre-Olivier, Xavier, Pascal, Rigler, Dániel, Krammer, Olivér, Plachy, Zbynek, Dusek, Karel, Kovács, Róbert, Fehér, Anna Éva, Géczy, Attila
Publikováno v:
In Sustainable Materials and Technologies July 2024 40
Autor:
Csiszár, R.L., Zsákai, A., Réfy, D.I., Walcz, E., Nagy, D., Oravecz, D., Zoletnik, S., Jachmich, S.
Publikováno v:
In Fusion Engineering and Design May 2024 202
Publikováno v:
In Journal of Engineering and Technology Management April-June 2024 72
Publikováno v:
In Fusion Engineering and Design April 2024 201