Zobrazeno 1 - 10
of 127
pro vyhledávání: '"Csáki, Endre"'
Autor:
Csaki, Endre, Foldes, Antonia
A tribute to the life and work of Pal Revesz. The Hungarian mathematical community lost one of his leading members, when Pal Revesz passed away on 14 of November 2022.
Externí odkaz:
http://arxiv.org/abs/2310.16163
Autor:
Csáki, Endre, Földes, Antonia
We study the local time of the anisotropic random walk on the two-dimensional lattice Z^2, by establishing the exact asymptotic behavior of the N-step return probability to the origin.
Comment: 17 pages. arXiv admin note: text overlap with arXiv
Comment: 17 pages. arXiv admin note: text overlap with arXiv
Externí odkaz:
http://arxiv.org/abs/2302.10041
Autor:
Csáki, Endre, Földes, Antónia
We study the path behavior of the symmetric walk on some special comb-type subsets of ${\mathbb Z}^2$ which are obtained from ${\mathbb Z}^2$ by generalizing the comb having finitely many horizontal lines instead of one.
Comment: 11 pages. arXiv
Comment: 11 pages. arXiv
Externí odkaz:
http://arxiv.org/abs/2206.14880
Autor:
Csaki, Endre, Foldes, Antonia
We study the path behavior of the anisotropic random walk on the two-dimensional lattice Z^2. Simultaneous strong approximations of its components are given.
Comment: 17 pages. arXiv admin note: text overlap with arXiv:1810.11810
Comment: 17 pages. arXiv admin note: text overlap with arXiv:1810.11810
Externí odkaz:
http://arxiv.org/abs/2108.09854
Autor:
Csaki, Endre, Foldes, Antonia
The Half-Plane Half-Comb walk is a random walk on the plane, when we have a square lattice on the upper half-plane and a comb structure on the lower half-plane, i.e. horizontal lines below the x-axis are removed. We prove that the probability that th
Externí odkaz:
http://arxiv.org/abs/2009.11767
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Csaki, Endre, Foldes, Antonia
We study the path behavior of the simple symmetric walk on some comb-type subsets of Z^2 which are obtained from Z^2 by removing all horizontal edges belonging to certain sets of values on the y-axis. We obtain some strong approximation results and d
Externí odkaz:
http://arxiv.org/abs/1810.11810
We consider random walks on the square lattice of the plane along the lines of Heyde (1982, 1993) and den Hollander (1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotro
Externí odkaz:
http://arxiv.org/abs/1709.10292
A simple random walk and a Brownian motion are considered on a spider that is a collection of half lines (we call them legs) joined in the origin. We give a strong approximation of these two objects and their local times. For fixed number of legs we
Externí odkaz:
http://arxiv.org/abs/1609.08710
We consider two or more simple symmetric walks on some graphs, e.g. the real line, the plane or the two dimensional comb lattice, and investigate the properties of the distance among the walkers.
Comment: 27 pages
Comment: 27 pages
Externí odkaz:
http://arxiv.org/abs/1604.08052