Zobrazeno 1 - 10
of 416
pro vyhledávání: '"Crosscap number"'
Autor:
McConkey, Rob
Kalfagianni and Lee found two-sided bounds for the crosscap number of an alternating link in terms of certain coefficients of the Jones polynomial. We show here that we can find similar two-sided bounds for the crosscap number of Conway sums of stron
Externí odkaz:
http://arxiv.org/abs/2308.09159
Autor:
Yamada, Kaito, Ito, Noboru
We specify the computational complexity of crosscap numbers of alternating knots by introducing an automatic computation. For an alternating knot $K$, let $\cal{E}$ be the number of edges of its diagram. Then there exists a code such that the complex
Externí odkaz:
http://arxiv.org/abs/2303.09996
Publikováno v:
Algebr. Geom. Topol. 24 (2024) 4307-4351
We give three algorithms to determine the crosscap number of a knot in the 3-sphere using $0$-efficient triangulations and normal surface theory. Our algorithms are shown to be correct for a larger class of complements of knots in closed 3-manifolds.
Externí odkaz:
http://arxiv.org/abs/2108.07599
Autor:
Jabuka, Stanislav
Publikováno v:
Pacific J. Math. 318 (2022) 375-400
The concordance crosscap number $\gamma_c(K)$ of a knot $K$ is the smallest crosscap number $\gamma_3(K')$ of any knot $K'$ concordant to $K$ (and with $\gamma_3(K')$ defined as the least first Betti number of any nonorientable surface $\Sigma$ embed
Externí odkaz:
http://arxiv.org/abs/2012.14801
Autor:
Ito, Noboru, Takimura, Yusuke
Publikováno v:
Internat. J. Math. Vol. 29, No. 12, 1850084 (2018)
We introduce an unknotting-type number of knot projections that gives an upper bound of the crosscap number of knots. We determine the set of knot projections with the unknotting-type number at most two, and this result implies classical and new resu
Externí odkaz:
http://arxiv.org/abs/2008.11061
Autor:
Ito, Noboru, Yamada, Kaito
Publikováno v:
JP J. Geom. and Topol. 26 (2021), no.2, 103--115
We introduce a "deformation" of plumbing. We also define a structure of data used in a calculation by computer aid of the crosscap numbers of alternating knots.
Comment: 9 pages, 15 figures
Comment: 9 pages, 15 figures
Externí odkaz:
http://arxiv.org/abs/2105.14453
We consider the relationship between the crosscap number $\gamma$ of knots and a partial order on the set of all prime knots, which is defined as follows. For two knots $K$ and $J$, we say $K \geq J$ if there exists an epimorphism $f:\pi_1(S^3-K) \lo
Externí odkaz:
http://arxiv.org/abs/2010.05009
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chen, Yichao1 ycchen@hnu.edu.cn, Gross, Jonathan L.2
Publikováno v:
Journal of Graph Theory. May2018, Vol. 88 Issue 1, p80-100. 21p.