Zobrazeno 1 - 10
of 6 329
pro vyhledávání: '"Critical percolation"'
Autor:
Asselah, Amine, Schapira, Bruno
We study intersection properties of two or more independent tree-like random graphs. Our setting encompasses critical, possibly long range, Bernoulli percolation clusters, incipient infinite clusters, as well as critical branching random walk ranges.
Externí odkaz:
http://arxiv.org/abs/2411.19145
We explore a bond percolation model on slabs $\mathbb{S}^+_k=\mathbb{Z}_+\times \mathbb{Z}_+\times\{0,\dots,k\}$ featuring one-dimensional inhomogeneities. In this context, a vertical column on the slab comprises the set of vertical edges projecting
Externí odkaz:
http://arxiv.org/abs/2408.10927
Autor:
Camia, Federico, Feng, Yu
The large-scale behavior of two-dimensional critical percolation is expected to be described by a conformal field theory (CFT). Moreover, this putative percolation CFT is believed to be of the logarithmic type, exhibiting logarithmic corrections to t
Externí odkaz:
http://arxiv.org/abs/2407.04246
Autor:
Povolotsky, A. M., Trofimova, A. A.
We consider $O(1)$ dense loop model in a square lattice wrapped on a cylinder of odd circumference $L$ and calculate the exact densities of loops. These densities of loops are equal to the densities of critical bond percolation clusters on a forty-fi
Externí odkaz:
http://arxiv.org/abs/2406.15133
Autor:
Camia, Federico, Feng, Yu
It is believed that the large-scale geometric properties of two-dimensional critical percolation are described by a logarithmic conformal field theory, but it has been challenging to exhibit concrete examples of logarithmic singularities and to find
Externí odkaz:
http://arxiv.org/abs/2403.18576
Autor:
Camia, Federico
We prove a formula, first obtained by Kleban, Simmons and Ziff using conformal field theory methods, for the (renormalized) density of a critical percolation cluster in the upper half-plane "anchored" to a point on the real line. The proof is inspire
Externí odkaz:
http://arxiv.org/abs/2312.11047
Autor:
Archer, Eleanor, Vogel, Quirin
Publikováno v:
Electron. J. Probab. 2024
We consider critical percolation on a supercritical Galton-Watson tree. We show that, when the offspring distribution is in the domain of attraction of an $\alpha$-stable law for some $\alpha \in (1,2)$, or has finite variance, several annealed prope
Externí odkaz:
http://arxiv.org/abs/2312.06485
Autor:
Archer, Eleanor, Croydon, David A.
We show that the Gromov-Hausdorff-Prohorov scaling limit of a critical percolation cluster on a random hyperbolic triangulation of the half-plane is the Brownian continuum random tree. As a corollary, we obtain that a simple random walk on the critic
Externí odkaz:
http://arxiv.org/abs/2311.11993
Recently, the number of non-standard percolation models has proliferated. In all these models, there exists a phase transition at which long range connectivity is established, if local connectedness increases through a threshold $p_c$. In ordinary (s
Externí odkaz:
http://arxiv.org/abs/2401.05234
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.