Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Cristian González-Riquelme"'
Publikováno v:
Annales Fennici Mathematici
In this paper we study the regularity properties of certain maximal operators of convolution type at the endpoint $p=1$, when acting on radial data. In particular, for the heat flow maximal operator and the Poisson maximal operator, when the initial
Let $G=(V,E)$ be a finite graph and $M_G$ be the centered Hardy-Littlewood maximal operator defined there. We find the optimal value $\bf{C}_{G,p}$ such that the inequality $$\text{Var}_{p}(M_{G}f)\leq {\textbf{C}}_{G,p}\text{Var}_{p}(f)$$ holds for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c8bc33a40f3f960b518409c5be1cfc7
http://arxiv.org/abs/2005.03146
http://arxiv.org/abs/2005.03146
In this paper we address the $W^{1,1}$-continuity of several maximal operators at the gradient level. A key idea in our global strategy is the decomposition of a maximal operator, with the absence of strict local maxima in the disconnecting set, into
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc4f64ed659113b05e7a762a2eb69606
Publikováno v:
Journal of Mathematical Analysis and Applications. 506:125647
Let $M_{G}$ be the centered Hardy-Littlewood maximal operator on a finite graph $G$. We find $\underset{p\to \infty}{\lim}\|M_{G}\|_{p}^{p }$ when $G$ is the start graph ($S_n$) and the complete graph ($K_n$), and we fully describe $\|M_{S_n}\|_{p}$
Publikováno v:
Journal of Functional Analysis. 281:109037
We prove the continuity of the map f ↦ M ˜ f from B V ( R ) to itself, where M ˜ is the uncentered Hardy–Littlewood maximal operator. This answers a question of Carneiro, Madrid and Pierce.