Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Cristián Mallol"'
Autor:
Richard Varro, Cristián Mallol
Publikováno v:
Journal of Algebra
Journal of Algebra, Elsevier, 2015, 427, pp.1-19. ⟨10.1016/j.jalgebra.2014.12.030⟩
Journal of Algebra, Elsevier, 2015, 427, pp.1-19. ⟨10.1016/j.jalgebra.2014.12.030⟩
We generalize the gametization process introduced in [5] . For this we use not necessarily convex linear combinations of a baric algebra ( A , ω ) with the gametic algebra defined by the weight ω , we call these combinations homogametizations. Afte
Autor:
Cristián Mallol, Richard Varro
Publikováno v:
Communications in Algebra
Communications in Algebra, Taylor & Francis, 2017, 45, pp.3486-3493. ⟨10.1080/00927872.2016.1237639⟩
Communications in Algebra, Taylor & Francis, 2017, 45, pp.3486-3493. ⟨10.1080/00927872.2016.1237639⟩
International audience; We study the relationship of backcrossing algebras with mutation algebras and algebras satisfying ω-polynomial identities: we show that in a backcrossing algebra every element of weight 1 generates a mutation algebra and that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::85fc119c4e5b5b1493e31cab65479cb8
https://hal.archives-ouvertes.fr/hal-03229611
https://hal.archives-ouvertes.fr/hal-03229611
Autor:
Cristián Mallol, Richard Varro
Publikováno v:
Journal of Algebra
Journal of Algebra, Elsevier, 2013, 375, pp.22-32. ⟨10.1016/j.jalgebra.2012.11.019⟩
Journal of Algebra, Elsevier, 2013, 375, pp.22-32. ⟨10.1016/j.jalgebra.2012.11.019⟩
The gametization process reduces the study of non-commutative and non-associative algebras satisfying non-homogeneous polynomial identities with variables in X = { x 1 , … , x n } to algebras verifying simpler identities. However after a gametizati
Autor:
Cristián Mallol, Richard Varro
Publikováno v:
Communications in Algebra
Communications in Algebra, Taylor & Francis, 2016, 45, pp.3555-3586. ⟨10.1080/00927872.2016.1238478⟩
Communications in Algebra, Taylor & Francis, 2016, 45, pp.3555-3586. ⟨10.1080/00927872.2016.1238478⟩
International audience; We study the ideal of polynomial identities of a single indeterminate satisfied by all backcrossing algebras. For this we distinguish two categories according to whether or not these algebras satisfy an identity for the plenar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d7d24e0c61923fec636041b9b273cf45
https://hal.archives-ouvertes.fr/hal-03230391
https://hal.archives-ouvertes.fr/hal-03230391
Publikováno v:
Communications in Algebra. 37:532-547
We study train algebras of fourth degree, give some genetic examples and explicit the plenary train identities associated. These algebras fall ultimately into four classes; the first two of them do not have 1/2 as train root and thus have idempotents
Autor:
Richard Varro, Cristián Mallol
Publikováno v:
Communications in Algebra. 35:3603-3610
We determine train polynomials for power associative algebras and for alternative train algebras. We show bonds between polynomials and nilindices of some factors of the Peirce decomposition.
Publikováno v:
Communications in Algebra. 33:4149-4158
We give some structure results and recursive-like methods for constructions and classifications of commutative nilalgebras of nilindex 3.
Autor:
Avelino Suazo, Cristián Mallol
Publikováno v:
Communications in Algebra. 28:2191-2199
Dans ce travail nous analysons la structure des algebres verifiant . Celles-ci generalisent les algebres de Bernstein et d'Ethcrington, parmi d'autres algebres ponderees classiquement etudiees.
Autor:
Cristián Mallol
Publikováno v:
Communications in Algebra. 26:4149-4157
Dans ce travail nous analysons ia structure d’une algebre, sous la condition d’existence d’un espace, suffisamment grand, de de qui inversent la decomposition de Peirce.
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 40:491-503
In this work we introduce the notion of E-ideal, generalizing I. M. H. Etherington's idea. We study the general characteristics of the lattice of E-ideals in baric algebras, and some properties inherited from an arithmetic of train polynomials.