Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Cristóbal Rivas"'
We show that if $G_1$ and $G_2$ are non-solvable groups, then no $C^{1,\tau}$ action of $(G_1\times G_2)*\mathbb{Z}$ on $S^1$ is faithful for $\tau>0$. As a corollary, if $S$ is an orientable surface of complexity at least three then the critical reg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f836b71e6188f77750d9602697de84cb
http://arxiv.org/abs/2104.15073
http://arxiv.org/abs/2104.15073
Publikováno v:
E-Prints Complutense. Archivo Institucional de la UCM
instname
instname
A regular left-order on finitely generated group $G$ is a total, left-multiplication invariant order on $G$ whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::88e077cf08ebb234ffc29ff2af283c02
https://eprints.ucm.es/id/eprint/72936/
https://eprints.ucm.es/id/eprint/72936/
We address the problem of computing the critical regularity of groups of homeomorphisms of the interval. Our main result is that if $H$ and $K$ are two non-solvable groups then a faithful $C^{1,\tau}$ action of $H\times K$ on a compact interval $I$ i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::978accc4418ac7141c3be71e50b2ce2e
http://arxiv.org/abs/2010.05722
http://arxiv.org/abs/2010.05722
We study the geometry of positive cones of left-invariant total orders (left-order, for short) in finitely generated groups. We introduce the \textit{Hucha property} and the \texit{Prieto property} for left-orderable groups. The first one means that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4ea3f0dc4859bfcce53f7a2ec43a70e
http://arxiv.org/abs/2001.10286
http://arxiv.org/abs/2001.10286
Publikováno v:
Journal of Algebra. 504:336-363
We give a classification and complete algebraic description of groups allowing only finitely many (left multiplication invariant) circular orders. In particular, they are all solvable groups with a specific semi-direct product decomposition. This all
Autor:
Cristóbal Rivas, Kathryn Mann
Publikováno v:
Annales de l’institut Fourier. 68:1399-1445
Let G be a countable group. We show there is a topological relationship between the space CO(G) of circular orders on G and the moduli space of actions of G on the circle; as well as an analogous relationship for spaces of left orders and actions on
We show that the finitely generated simple left orderable groups $G_{\rho}$ constructed by the first two authors in arXiv:1807.06478 are uniformly perfect - each element in the group can be expressed as a product of three commutators of elements in t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7214df9b80d68140b79852e58627abc2
http://arxiv.org/abs/1901.03314
http://arxiv.org/abs/1901.03314
Publikováno v:
Mathematische Zeitschrift. 286:919-949
We consider Abelian-by-cyclic groups for which the cyclic factor acts by hyperbolic automorphisms on the Abelian subgroup. We show that if such a group acts faithfully by \(C^1\) diffeomorphisms of the closed interval with no global fixed point at th
Publikováno v:
Ergodic Theory and Dynamical Systems. 38:180-194
In this work, we determine the largest $\unicode[STIX]{x1D6FC}$ for which the nilpotent group of four-by-four triangular matrices with integer coefficients and the value one in the diagonal embeds into the group of $C^{1+\unicode[STIX]{x1D6FC}}$ diff
Autor:
Yago Antolín, Cristóbal Rivas
Publikováno v:
Biblos-e Archivo. Repositorio Institucional de la UAM
instname
instname
Electronic version of an article published as Journal of Topology and Analysis 13.1 (2021): 75-85. https://doi.org/10.1142/S1793525320500053 © 2021 World Scientific Publishing Company. https://www.worldscientific.com/worldscinet/jta
We introduc
We introduc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00ee5d46fcc6afd3189ef96fef6a02ba
http://arxiv.org/abs/1802.05217
http://arxiv.org/abs/1802.05217