Zobrazeno 1 - 10
of 410
pro vyhledávání: '"Creutzig, Thomas"'
Let $A$ be a commutative algebra in a braided monoidal category $\mathcal{C}$; e.g., $A$ could be an extension of a vertex operator algebra (VOA) $V$ in a category $\mathcal{C}$ of $V$-modules. We study when the category $\mathcal{C}_A$ of $A$-module
Externí odkaz:
http://arxiv.org/abs/2409.14618
The universal $2$-parameter vertex algebra $W_{\infty}$ of type $W(2,3,4,\dots)$ serves as a classifying object for vertex algebras of type $W(2,3,\dots,N)$ for some $N$ in the sense that under mild hypothesis, all such vertex algebras arise as quoti
Externí odkaz:
http://arxiv.org/abs/2409.03465
We discuss a possible generalization of a result by the third-named author on the rationality of non-admissible minimal W-algebras. We then apply this generalization to finding rational non-admissible principal W-algebras.
Externí odkaz:
http://arxiv.org/abs/2408.04584
We introduce a family of 3d $\mathcal{N} = 4$ superconformal field theories that have zero-dimensional Coulomb and Higgs branches and propose that the rational vertex operator algebras $W^{\text{min}}_{k - \scriptstyle{\frac{1}{2}}}(\mathfrak{sp}_{2N
Externí odkaz:
http://arxiv.org/abs/2406.00138
We formulate and prove examples of a conjecture which describes the W-algebras in type A as successive quantum Hamiltonian reductions of affine vertex algebras associated with several hook-type nilpotent orbits. This implies that the affine coset sub
Externí odkaz:
http://arxiv.org/abs/2403.08212
Autor:
Creutzig, Thomas, Niu, Wenjun
We prove the Kazhdan-Lusztig correspondence for a class of vertex operator superalgebras which, via the work of Costello-Gaiotto, arise as boundary VOAs of topological B twist of 3d $\mathcal{N}=4$ abelian gauge theories. This means that we show equi
Externí odkaz:
http://arxiv.org/abs/2403.02403
Autor:
Creutzig, Thomas
The category of weight modules $L_k(\mathfrak{sl}_2)\text{-wtmod}$ of the simple affine vertex algebra of $\mathfrak{sl}_2$ at an admissible level $k$ is neither finite nor semisimple and modules are usually not lower-bounded and have infinite dimens
Externí odkaz:
http://arxiv.org/abs/2311.10240
We study the weight modules over affine Kac-Moody algebras from the view point of vertex algebras, and determine the abelian category of weight modules for the simple affine vertex algebra $L_k(\mathfrak{sl}_2)$ at any non-integral admissible level $
Externí odkaz:
http://arxiv.org/abs/2311.10233
Publikováno v:
Adv. Math.448(2024), Paper No. 109717
We study the affine analogue $\mathrm{FT}_p(\mathfrak{sl}_2)$ of the triplet algebra. We show that $\mathrm{FT}_p(\mathfrak{sl}_2)$ is quasi-lisse and the associated variety is the nilpotent cone of $\mathfrak{sl}_2$. We realize $\mathrm{FT}_p(\mathf
Externí odkaz:
http://arxiv.org/abs/2306.13568