Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Cresson, Rémi"'
Autor:
Cresson, Rémi, Narçon, Nicolas, Gaetano, Raffaele, Dupuis, Aurore, Tanguy, Yannick, May, Stéphane, Commandre, Benjamin
With the increasing availability of optical and synthetic aperture radar (SAR) images thanks to the Sentinel constellation, and the explosion of deep learning, new methods have emerged in recent years to tackle the reconstruction of optical images th
Externí odkaz:
http://arxiv.org/abs/2204.00424
Autor:
Cresson, Rémi
Deep learning techniques are becoming increasingly important to solve a number of image processing tasks. Among common algorithms, Convolutional Neural Networks and Recurrent Neural Networks based systems achieve state of the art results on satellite
Externí odkaz:
http://arxiv.org/abs/1807.06535
Nowadays, Earth Observation systems provide a multitude of heterogeneous remote sensing data. How to manage such richness leveraging its complementarity is a crucial chal- lenge in modern remote sensing analysis. Data Fusion techniques deal with this
Externí odkaz:
http://arxiv.org/abs/1806.11452
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cresson, Remi
Publikováno v:
IEEE journal of geoscience and remote sensing letters, 2016
The amount of remote sensing data available to applications is constantly growing due to the rise of very-high-resolution sensors and short repeat cycle satellites. Consequently, tackling computational complexity in Earth Observation information extr
Externí odkaz:
http://arxiv.org/abs/1609.08893
Autor:
Puissant, Anne, Catry, Thibault, Cresson, Rémi, Dessay, Nadine, Demagistri, Laurent, Gadal, Sébastien, Le Bris, Arnaud, Ose, Kenji, Pillot, Benjamin
Publikováno v:
ESA Living Planet Symposium 2022
ESA Living Planet Symposium 2022, May 2022, Bonn, Germany., 2022
ESA Living Planet Symposium 2022, May 2022, Bonn, Germany., 2022
International audience; The THEIA data and services centre (www.theia-land.fr) is a consortium of 10 French public institutions (CEA, CEREMA, CIRAD, CNES, IGN, INRAE, CNRS, IRD, Météo France, and ONERA) designed to foster the use of Earth Observati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0bd4cedecdee631e75d9fe68e990cc08
Autor:
Lozac'h, Loïc, Bazzi, Hassan, Baghdadi, Nicolas, Hajj, Mohammad, Zribi, Mehrez, Cresson, Rémi
Publikováno v:
IEEE Geoscience and Remote Sensing Society (M2GARSS 2020)
IEEE Geoscience and Remote Sensing Society (M2GARSS 2020), Mar 2020, Tunis, Tunisia. ⟨10.1109/M2GARSS47143.2020.9105210⟩
IEEE Geoscience and Remote Sensing Society (M2GARSS 2020), Mar 2020, Tunis, Tunisia. ⟨10.1109/M2GARSS47143.2020.9105210⟩
International audience; The objective of this paper is to present an operational approach for mapping soil moisture at high spatial resolution over agricultural areas with vegetation cover. The developed approach uses the neural network (NN) techniqu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3d87d520ec997bfaf0c646ec09b8f08d
https://hal.inrae.fr/hal-02631856/document
https://hal.inrae.fr/hal-02631856/document
Autor:
CRESSON, RÉMI
Publikováno v:
Journal of Open Research Software; 2022, Vol. 10 Issue 1, p1-5, 5p
Publikováno v:
Remote Sensing, Vol 10, Iss 11, p 1746 (2018)
Remote Sensing
Remote Sensing, MDPI, 2018, 10 (11), pp.1746. ⟨10.3390/rs10111746⟩
Remote Sensing
Remote Sensing, MDPI, 2018, 10 (11), pp.1746. ⟨10.3390/rs10111746⟩
The use of Very High Spatial Resolution (VHSR) imagery in remote sensing applications is nowadays a current practice whenever fine-scale monitoring of the earth’s surface is concerned. VHSR Land Cover classification, in particular, is currently a w
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.