Zobrazeno 1 - 10
of 238
pro vyhledávání: '"Crepant resolution"'
Autor:
Lin, Hui-Wen
Publikováno v:
Transactions of the American Mathematical Society, 2002 May 01. 354(5), 1861-1868.
Externí odkaz:
https://www.jstor.org/stable/2693722
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
International Mathematics Research Notices, 2022, 8769-8802
International Mathematics Research Notices, 2022, 11, pp. 8769-8802
International Mathematics Research Notices, 2022, 11, pp. 8769-8802
O'Grady constructed a 6-dimensional irreducible holomorphic symplectic variety by taking a crepant resolution of some moduli space of stable sheaves on an abelian surface. In this paper, we naturally extend O'Grady's construction to fields of positiv
Autor:
Sergei Alexandrov, Boris Pioline
Publikováno v:
Annales Henri Poincaré. 23:1909-1949
We revisit the Riemann-Hilbert problem determined by Donaldson-Thomas invariants for the resolved conifold and for other small crepant resolutions. While this problem can be recast as a system of TBA-type equations in the conformal limit, solutions a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Algebraic Geometry. 29:729-751
Let R R be a Cohen–Macaulay normal domain with a canonical module ω R \omega _R . It is proved that if R R admits a noncommutative crepant resolution (NCCR), then necessarily it is Q \mathds {Q} -Gorenstein. Writing S S for a Zariski local canonic
Publikováno v:
Journal of the American Mathematical Society, 2005 Jan 01. 18(1), 193-215.
Externí odkaz:
https://www.jstor.org/stable/20161231
Publikováno v:
Journal of Algebra. 536:102-148
The notion of a noncommutative quasi-resolution is introduced for a noncommutative noetherian algebra with singularities, even for a non-Cohen-Macaulay algebra. If A is a commutative normal Gorenstein domain, then a noncommutative quasi-resolution of
Autor:
Luca Scala
Publikováno v:
Communications in Algebra. 47:3614-3628
We study the singularities of the isospectral Hilbert scheme $B^n$ of $n$ points over a smooth algebraic surface and we prove that they are canonical if $n \leq 5$, log-canonical if $n \leq 7$ and not log-canonical if $n \geq 9$. We describe as well
Autor:
Wahei Hara
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications.
The Abuaf-Ueda flop is a 7-dimensional flop related to G2 homogeneous spaces. The derived equivalence for this flop was first proved by Ueda using mutations of semi-orthogonal decompositions. In this article, we give an alternative proof for the deri