Zobrazeno 1 - 10
of 1 696
pro vyhledávání: '"Crepant resolution"'
Autor:
Genlik, Deniz, Tseng, Hsian-Hua
We study the structure of the higher genus Gromov-Witten theory of the total space $K\mathbb{P}^{n-1}$ of the canonical bundle of the projective space $\mathbb{P}^{n-1}$. We prove the finite generation property for the Gromov-Witten potential of $K\m
Externí odkaz:
http://arxiv.org/abs/2308.00780
Autor:
Fan, Linghu
Publikováno v:
Proc.Japan Acad.Ser.A Math.Sci. 99(9): 71-76 (November 2023)
In this paper, we construct a crepant resolution for the quotient singularity $\mathbb{A}^4/A_4$ in characteristic 2, where $A_4$ is the alternating group of degree 4 with permutation action on $\mathbb{A}^4$. By computing the Euler number of the cre
Externí odkaz:
http://arxiv.org/abs/2305.05905
Autor:
Linghu FAN1
Publikováno v:
Proceedings of the Japan Academy, Series A: Mathematical Sciences. Nov2023, Vol. 99 Issue 9, p71-76. 6p.
Publikováno v:
Trans. Amer. Math. Soc. 376 (2023), no. 11, 8225-8268
Let $G$ be a finite subgroup of $\mathrm{SU}(4)$ whose elements have age not larger than one. In the first part of this paper, we define $K$-theoretic stable pair invariants on the crepant resolution of the affine quotient $\mathbb{C}^4/G$, and conje
Externí odkaz:
http://arxiv.org/abs/2301.11629
Autor:
Lin, Hui-Wen
Publikováno v:
Transactions of the American Mathematical Society, 2002 May 01. 354(5), 1861-1868.
Externí odkaz:
https://www.jstor.org/stable/2693722
Autor:
Beentjes, Sjoerd Viktor1 (AUTHOR) sjoerd.beentjes@ed.ac.uk, Calabrese, John2 (AUTHOR), Rennemo, Jørgen Vold3 (AUTHOR)
Publikováno v:
Inventiones Mathematicae. Aug2022, Vol. 229 Issue 2, p451-562. 112p.
We prove the crepant resolution conjecture for Donaldson-Thomas invariants of hard Lefschetz CY3 orbifolds, formulated by Bryan-Cadman-Young, interpreting the statement as an equality of rational functions. In order to do so, we show that the generat
Externí odkaz:
http://arxiv.org/abs/1810.06581
Autor:
Lho, Hyenho, Pandharipande, Rahul
We study the orbifold Gromov-Witten theory of the quotient C^3/Z_3 in all genera. Our first result is a proof of the holomorphic anomaly equations in the precise form predicted by B-model physics. Our second result is an exact crepant resolution corr
Externí odkaz:
http://arxiv.org/abs/1804.03168
Autor:
Lho, Hyenho
We study the relationship between Gromov-Witten invariants of local $\mathbb{P}^4$ and Gromov-witten invariants of $[\mathbb{C}^5/\mathbb{Z}_5]$ for all genera. We state the crepant resolution conjecture in explicit form and prove this conjecture for
Externí odkaz:
http://arxiv.org/abs/1707.02910
Autor:
Hara, Wahei
Publikováno v:
Advances in Mathematics 318 (2017) 355-410
In this article, we construct a non-commutative crepant resolution (=NCCR) of a minimal nilpotent orbit closure $\overline{B(1)}$ of type A, and study relations between an NCCR and crepant resolutions $Y$ and $Y^+$ of $\overline{B(1)}$. More precisel
Externí odkaz:
http://arxiv.org/abs/1704.07192