Zobrazeno 1 - 10
of 212
pro vyhledávání: '"Crampe, N."'
We introduce a generalization of bivariate Griffiths polynomials depending on an additional parameter $\lambda$. These $\lambda$-Griffiths polynomials are bivariate, bispectral and biorthogonal. For two specific values of the parameter $\lambda$, the
Externí odkaz:
http://arxiv.org/abs/2311.03256
Publikováno v:
Lett. Math. Phys. 113 (2023), no. 5, article number 108
A model of the Bannai-Ito algebra in a superspace is introduced. It is obtained from the three-fold tensor product of the basic realization of the Lie superalgebra $osp(1|2)$ in terms of operators in one continuous and one Grassmanian variable. The b
Externí odkaz:
http://arxiv.org/abs/2306.02714
Publikováno v:
Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 361-382
Bivariate P-polynomial association scheme of type $(\alpha,\beta)$ are defined as a generalization of the P-polynomial association schemes. This generalization is shown to be equivalent to a set of conditions on the intersection parameters. A number
Externí odkaz:
http://arxiv.org/abs/2212.10824
The time and band limiting operator is introduced to optimize the reconstruction of a signal from only a partial part of its spectrum. In the discrete case, this operator commutes with the so-called algebraic Heun operator which appears in the contex
Externí odkaz:
http://arxiv.org/abs/2201.04589
Publikováno v:
Commun. Math. Phys. 400 (2023) 179--213
We present explicit formulas for the operators providing missing labels for the tensor product of two irreducible representations of $\mathfrak{su}_3$. The result is seen as a particular representation of the diagonal centraliser of $\mathfrak{su}_3$
Externí odkaz:
http://arxiv.org/abs/2110.03521
Publikováno v:
J. Lie Theory 31 (2021), no. 4, 1085--1112
Building on classical invariant theory, it is observed that the polarised traces generate the centraliser $Z_L(sl(N))$ of the diagonal embedding of $U(sl(N))$ in $U(sl(N))^{\otimes L}$. The paper then focuses on $sl(3)$ and the case $L=2$. A Calabi--
Externí odkaz:
http://arxiv.org/abs/2005.13444
Autor:
Crampe, N., d'Andecy, L. Poulain
Publikováno v:
Lett. Math. Phys. 111 (2021), no. 4, Paper No. 92, 21 pp
We give an explicit Baxterisation formula for the fused Hecke algebra and its classical limit for the algebra of fused permutations. These algebras replace the Hecke algebra and the symmetric group in the Schur--Weyl duality theorems for the symmetri
Externí odkaz:
http://arxiv.org/abs/2004.05035
Autor:
Crampe, N., d'Andecy, L. Poulain
Publikováno v:
Algebr. Represent. Theor. 26 (2023) 901--955
We present in this paper the algebra of fused permutations and its deformation the fused Hecke algebra. The first one is defined on a set of combinatorial objects that we call fused permutations, and its deformation is defined on a set of topological
Externí odkaz:
http://arxiv.org/abs/2001.11372
Autor:
Crampe, N., Grundland, A. M.
Publikováno v:
Ann. Henri Poincar\'e (2019)
The main objective of this paper is to establish a new connection between the Hermitian rank-1 projector solutions of the Euclidean $\mathbb{C}P^{2S}$ sigma model in two dimensions and the particular hypergeometric orthogonal polynomials called Krawt
Externí odkaz:
http://arxiv.org/abs/1905.06351
Autor:
Crampe, N., Nepomechie, R. I.
Publikováno v:
J. Stat. Mech. (2018) 103105
Starting from the Bethe ansatz solution for the open Totally Asymmetric Simple Exclusion Process (TASEP), we compute the largest eigenvalue of the deformed Markovian matrix, in exact agreement with results obtained by the matrix ansatz. We also compu
Externí odkaz:
http://arxiv.org/abs/1806.07748