Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Covanov, Svyatoslav"'
Autor:
Covanov, Svyatoslav
Depuis 1960 et le résultat fondateur de Karatsuba, on sait que la complexité de la multiplication (d’entiers ou de polynômes) est sous-quadratique : étant donné un anneau R quelconque, le produit sur R[X] des polynômes a_0 + a_1 X et b_0 + b_
Externí odkaz:
http://www.theses.fr/2018LORR0057/document
Autor:
Covanov, Svyatoslav
In 2012, Barbulescu, Detrey, Estibals and Zimmermann proposed a new framework to exhaustively search for optimal formulae for evaluating bilinear maps, such as Strassen or Karatsuba formulae. The main contribution of this work is a new criterion to a
Externí odkaz:
http://arxiv.org/abs/1705.07728
Autor:
Chen, Changbo, Covanov, Svyatoslav, Mansouri, Farnam, Maza, Marc Moreno, Xie, Ning, Xie, Yuzhen
We propose a new algorithm for multiplying dense polynomials with integer coefficients in a parallel fashion, targeting multi-core processor architectures. Complexity estimates and experimental comparisons demonstrate the advantages of this new appro
Externí odkaz:
http://arxiv.org/abs/1612.05778
Autor:
Covanov, Svyatoslav, Thomé, Emmanuel
For almost 35 years, Sch{\"o}nhage-Strassen's algorithm has been the fastest algorithm known for multiplying integers, with a time complexity O(n $\times$ log n $\times$ log log n) for multiplying n-bit inputs. In 2007, F{\"u}rer proved that there ex
Externí odkaz:
http://arxiv.org/abs/1502.02800
Autor:
Covanov, Svyatoslav
Publikováno v:
In Theoretical Computer Science 22 October 2019 790:41-65
Autor:
Covanov, Svyatoslav
Publikováno v:
Symbolic Computation [cs.SC]. Université de Lorraine, 2018. English. ⟨NNT : 2018LORR0057⟩
Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::89203b7c7631097b67c4136cfc976809
https://theses.hal.science/tel-01825744
https://theses.hal.science/tel-01825744
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chen, Changbo, Covanov, Svyatoslav, Mansouri, Farnam, Moir, Robert, Moreno Maza, Marc, Xie, Ning, Xie, Yuzhen
Publikováno v:
ACM Communications in Computer Algebra
ACM Communications in Computer Algebra, Association for Computing Machinery (ACM), 2016, 50 (3), pp.97--100. ⟨10.1145/3015306.3015312⟩
ACM Communications in Computer Algebra, 2016, 50 (3), pp.97--100. ⟨10.1145/3015306.3015312⟩
ACM Communications in Computer Algebra, Association for Computing Machinery (ACM), 2016, 50 (3), pp.97--100. ⟨10.1145/3015306.3015312⟩
ACM Communications in Computer Algebra, 2016, 50 (3), pp.97--100. ⟨10.1145/3015306.3015312⟩
International audience; The Basic Polynomial Algebra Subprograms (BPAS) provides arithmetic operations (multiplication, division, root isolation, etc.) for univariate and multivariate polynomials over common types of coefficients (prime fields, compl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a21ba17a15295828ba7326e9ec5429b4
https://hal.archives-ouvertes.fr/hal-01404718/file/ISSAC_Software_Demo_CCMMXX.pdf
https://hal.archives-ouvertes.fr/hal-01404718/file/ISSAC_Software_Demo_CCMMXX.pdf
Autor:
Chen, Changbo, Covanov, Svyatoslav, Mansouri, Farnam, Maza, Marc Moreno, Xie, Ning, Xie, Yuzhen
Publikováno v:
Mathematical Software - ICMS 2014; 2014, p669-676, 8p
Publikováno v:
ACM Communications in Computer Algebra; February 2015, Vol. 48 Issue: 4 p197-201, 5p