Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Courte, Sylvain"'
Generalizing Heegaard splittings of 3-manifolds and trisections of 4-manifolds, we consider multisections of higher-dimensional smooth (or PL) closed orientable manifolds, namely decompositions into 1-handlebodies whose subcollections intersect along
Externí odkaz:
http://arxiv.org/abs/2303.08779
We prove that, for closed exact embedded Lagrangian submanifolds of cotangent bundles, the homomorphism of homotopy groups induced by the stable Lagrangian Gauss map vanishes. In particular, we prove that this map is null-homotopic for all spheres. T
Externí odkaz:
http://arxiv.org/abs/2011.13178
Autor:
Courte, Sylvain, Massot, Patrick
We explain a connection between the algebraic and geometric properties of groups of contact transformations, open book decompositions, and flexible Legendrian embeddings. The main result is that, if a closed contact manifold $(V, \xi)$ has a supporti
Externí odkaz:
http://arxiv.org/abs/1803.07997
Autor:
Courte, Sylvain, Ekholm, Tobias
An exact Lagrangian submanifold $L$ in the symplectization of standard contact $(2n-1)$-space with Legendrian boundary $\Sigma$ can be glued to itself along $\Sigma$. This gives a Legendrian embedding $\Lambda(L,L)$ of the double of $L$ into contact
Externí odkaz:
http://arxiv.org/abs/1712.07849
Autor:
Courte, Sylvain
À toute variété de contact, on peut associer canoniquement une variété symplectique appelée sa symplectisation de sorte que la géométrie de contact peut se reformuler en termes de géométrie symplectique équivariante. Au sujet de cette cons
Externí odkaz:
http://www.theses.fr/2015ENSL0991/document
Autor:
Courte, Sylvain
Publikováno v:
Algebr. Geom. Topol. 16 (2016) 3641-3652
In any contact manifold of dimension $2n-1\geq 11$, we construct examples of closed legendrian submanifolds which are not diffeomorphic but whose lagrangian cylinders in the symplectization are hamiltonian isotopic.
Comment: 8 pages, added an ex
Comment: 8 pages, added an ex
Externí odkaz:
http://arxiv.org/abs/1512.00606
Autor:
Courte, Sylvain
Publikováno v:
Journal of Symplectic Geometry 14 (2016) 657-669
We prove that closed connected contact manifolds of dimension $\geq 5$ related by an h-cobordism with a flexible Weinstein structure become contactomorphic after some kind of stabilization. We also provide examples of non-conjugate contact structures
Externí odkaz:
http://arxiv.org/abs/1410.2530
Autor:
Courte, Sylvain
Publikováno v:
Geometry & Topology 18 (2014) 1-15
We provide examples of contact manifolds of any odd dimension $\geq 5$ which are not diffeomorphic but have exact symplectomorphic symplectizations.
Externí odkaz:
http://arxiv.org/abs/1212.5618
Autor:
Courte, Sylvain
Publikováno v:
Gazette des Mathématiciens
Gazette des Mathématiciens, Société Mathématique de France, 2017, pp.21-27
Gazette des Mathématiciens, Société Mathématique de France, 2017, pp.21-27
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::01b22851f2790746f95cd8dea60eca7b
https://hal.archives-ouvertes.fr/hal-02320380
https://hal.archives-ouvertes.fr/hal-02320380
Autor:
Courte, Sylvain
Publikováno v:
Mathématiques générales [math.GM]. Ecole normale supérieure de lyon-ENS LYON, 2015. Français. ⟨NNT : 2015ENSL0991⟩
To any contact manifold one can associate a symplectic manifold called its symplectisation in such a way that contact geometry can be reformulated in terms of equivariant symplectic geometry. Concerning this fundamental construction, a basic question
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::20b98e074faeb261ec7ff5de9a2aca06
https://theses.hal.science/tel-01160399
https://theses.hal.science/tel-01160399