Zobrazeno 1 - 10
of 2 907
pro vyhledávání: '"Courbes Elliptiques"'
Autor:
Gazda, Quentin, Junger, Damien
It is often stated that the Carlitz module is to the ring of univariate polynomials over a finite field what the multiplicative group is to the ring of integers. This analogy extends to the "rank 2" case, where Drinfeld modules play a role similar to
Externí odkaz:
http://arxiv.org/abs/2306.13160
Autor:
GUILLOT Philippe
Cet ouvrage propose une introduction aux courbes elliptiques pour la cryptographie. Il décrit leur utilisation pour la protection de l'information et présente les développements les plus récents, en particulier la cryptographie bilinéaire, renda
Autor:
RICHARD, Rodolphe
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 2018 Jan 01. 30(1), 1-18.
Externí odkaz:
https://www.jstor.org/stable/26430474
Autor:
Kohen, Daniel, Pacetti, Ariel
Publikováno v:
In Comptes rendus - Mathématique October 2018 356(10):973-983
Autor:
Bruin, Peter
Publikováno v:
Acta Arith. 160 (2013), 385-397
We give an algorithm that, given an elliptic curve $E$ over $\Qbar$ in Weierstra{\ss} form, computes the infimum and supremum of the difference between the na\"{\i}ve and canonical height functions on $E(\Qbar)$. ----- Nous donnons un algorithme qui,
Externí odkaz:
http://arxiv.org/abs/1212.6515
Autor:
David, Agnès
For a fixed number field and an elliptic curve defined and semi-stable over this number field, we consider the set of prime numbers p such that the Galois representation attached to the p-torsion points of the elliptic curve is reducible. When the nu
Externí odkaz:
http://arxiv.org/abs/1202.1649
Autor:
LECACHEUX, Odile
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 2003 Jan 01. 15(1), 231-247.
Externí odkaz:
https://www.jstor.org/stable/43972700
Autor:
David, Agnès
Let K be a fixed number field and G its absolute Galois group. We give a bound C(K), depending only on the degree, the class number and the discriminant of K, such that for any elliptic curve E defined over K and any prime number p strictly larger th
Externí odkaz:
http://arxiv.org/abs/1007.4725
Autor:
Billerey, Nicolas
Let $E$ be an elliptic curve defined over a number field $K$. We say that a prime number $p$ is exceptional for $(E,K)$ if $E$ admits a $p$-isogeny defined over $K$. The so-called exceptional set of all such prime numbers is finite if and only if $E$
Externí odkaz:
http://arxiv.org/abs/0908.1084