Zobrazeno 1 - 10
of 299
pro vyhledávání: '"Costin, O."'
We construct a new type of convergent, and asymptotic, representations, dyadic expansions. Their convergence is geometric and the region of convergence often extends from infinity down to $0^+$. We show that dyadic expansions are numerically efficien
Externí odkaz:
http://arxiv.org/abs/2210.17502
Spherical harmonic expansions (SHEs) play an important role in most of the physical sciences, especially in physical geodesy. Despite many decades of investigation, the large order behavior of the SHE coefficients, and the precise domain of convergen
Externí odkaz:
http://arxiv.org/abs/2011.05709
For a singleton planet $P$ with gravitational potential $V$, we show that for each $\varepsilon > 0$ there exists a planet $P'$ with gravitational potential $V'$, with $(P',V')$ "$\varepsilon$-close" to $(P,V)$ (in an appropriate $C^0$-sense) for whi
Externí odkaz:
http://arxiv.org/abs/2011.04724
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Costin O. Sorici, Claudia Sălceanu, Raluca S. Matei, Dragoș F. Sburlan, Adina Țiței, Mihai A. Gîrțu
Publikováno v:
Education Sciences, Vol 13, Iss 10, p 967 (2023)
Limited information is available on the design of combined innovation and entrepreneurship training courses, and with even less available on delivering such courses to multidisciplinary teams. We designed an extracurricular project-based training cou
Externí odkaz:
https://doaj.org/article/d0ae4fd1fb6a4a3181d09b305ee23f95
Autor:
Costin, O., Costin, R. D.
We construct a new type of convergent asymptotic representations, dyadic factorial expansions. Their convergence is geometric and the region of convergence can include Stokes rays, and often extends down to 0^+. For special functions such as Bessel,
Externí odkaz:
http://arxiv.org/abs/1608.01010
Using the simple case of Blasius similarity solution, we illustrate a recently developed general method that reduces a strongly nonlinear problem into a weakly nonlinear analysis. The basic idea is to find a quasi-solution $F_0$ that satisfies the no
Externí odkaz:
http://arxiv.org/abs/1311.0421
We analyze the one parameter family of tronqu\'ee solutions of the Painlev\'e equation \P1 in the pole-free sectors together with the region of the first array of poles. We find a convergent expansion for these solutions, containing one free paramete
Externí odkaz:
http://arxiv.org/abs/1310.5330
Autor:
Costin, O., Tanveer, S.
We use a recently developed method \cite{Costinetal}, \cite{Dubrovin} to find accurate analytic approximations with rigorous error bounds for the classic similarity solution of Blasius of the boundary layer equation in fluid mechanics, the two point
Externí odkaz:
http://arxiv.org/abs/1303.1416