Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Coquand, Olivier"'
Autor:
Coquand, Olivier, Sperl, Matthias
Publikováno v:
Phys. Rev. E 104, 014604 (2021)
The Granular Integration Through Transients (GITT) formalism gives a theoretical description of the rheology of moderately dense granular flows and suspensions. In this work, we extend the GITT equations beyond the case of simple shear flows studied
Externí odkaz:
http://arxiv.org/abs/2103.13169
We adapt statistical models of the physics of complex fluids to study the rheology of granular liquids. This allows us to provide laws of granular rheology based on first principles, which compare well with previously established phenomenological law
Externí odkaz:
http://arxiv.org/abs/2008.05931
Publikováno v:
Phys. Rev. E 102, 032602 (2020)
This work generalises the granular integration through transients formalism introduced by Kranz et al. [Phys. Rev. Lett. 121, 148002 (2018)] to the determination of the pressure. We focus on the Bagnold regime, and provide theoretical support to the
Externí odkaz:
http://arxiv.org/abs/2006.04151
Autor:
Coquand, Olivier, Machet, Bruno
1-loop quantum corrections are shown to induce large effects on the refraction index $n$ inside a graphene strip in the presence of an external magnetic field $B$ orthogonal to it. To this purpose, we use the tools of Quantum Field Theory to calculat
Externí odkaz:
http://arxiv.org/abs/1410.6585
Autor:
Coquand, Olivier, Machet, Bruno
1-loop quantum corrections are shown to induce large effects on the refraction index n inside a graphene strip in the presence of an external magnetic field B orthogonal to it. To this purpose, we use the tools of Quantum Field Theory to calculate th
Externí odkaz:
http://arxiv.org/abs/1407.1964
Publikováno v:
In Science Talks August 2022 3
Autor:
Coquand, Olivier
Publikováno v:
Matière Condensée [cond-mat]. Sorbonne Université, 2018. Français. ⟨NNT : 2018SORUS096⟩
This works deals with the mechanical properties of crystalline membranes, which are two-dimensional materials with an underlying periodic lattice at the microscopic scale which provides them with elastic properties. It is one of the scarce examples o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::6d8244a1cebcdf0017d05122b88ae6e6
https://tel.archives-ouvertes.fr/tel-02555243/document
https://tel.archives-ouvertes.fr/tel-02555243/document
Autor:
Coquand, Olivier
Publikováno v:
Matière Condensée [cond-mat]. Sorbonne Université, 2018. Français. ⟨NNT : 2018SORUS096⟩
This works deals with the mechanical properties of crystalline membranes, which are two-dimensional materials with an underlying periodic lattice at the microscopic scale which provides them with elastic properties. It is one of the scarce examples o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::6d8244a1cebcdf0017d05122b88ae6e6
https://theses.hal.science/tel-02555243
https://theses.hal.science/tel-02555243