Zobrazeno 1 - 10
of 8 365
pro vyhledávání: '"Cooley, P."'
Physics-informed neural networks (PINNs) are an increasingly popular class of techniques for the numerical solution of partial differential equations (PDEs), where neural networks are trained using loss functions regularized by relevant PDE terms to
Externí odkaz:
http://arxiv.org/abs/2410.03573
Interest is rising in Physics-Informed Neural Networks (PINNs) as a mesh-free alternative to traditional numerical solvers for partial differential equations (PDEs). However, PINNs often struggle to learn high-frequency and multi-scale target solutio
Externí odkaz:
http://arxiv.org/abs/2410.03496
Autor:
SuperCDMS Collaboration, Albakry, M. F., Alkhatib, I., Alonso-González, D., Amaral, D. W. P., Anczarski, J., Aralis, T., Aramaki, T., Arnquist, I. J., Langroudy, I. Ataee, Azadbakht, E., Bathurst, C., Bhattacharyya, R., Biffl, A. J., Brink, P. L., Buchanan, M., Bunker, R., Cabrera, B., Calkins, R., Cameron, R. A., Cartaro, C., Cerdeño, D. G., Chang, Y. -Y., Chaudhuri, M., Chen, J. -H., Chen, R., Chott, N., Cooley, J., Coombes, H., Cushman, P., Cyna, R., Das, S., De Brienne, F., Dharani, S., di Vacri, M. L., Diamond, M. D., Elwan, M., Fascione, E., Figueroa-Feliciano, E., Fouts, K., Fritts, M., Germond, R., Ghaith, M., Golwala, S. R., Hall, J., Harms, S. A. S., Harris, K., Hassan, N., Hong, Z., Hoppe, E. W., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Kashyap, V. K. S., Keller, S. T. D., Kelsey, M. H., Kennard, K. T., Kubik, A., Kurinsky, N. A., Lee, M., Leyva, J., Liu, J., Liu, Y., Loer, B., Asamar, E. Lopez, Lukens, P., MacFarlane, D. B., Mahapatra, R., Mammo, J. S., Mast, N., Mayer, A. J., Theenhausen, H. Meyer zu, Michaud, É., Michielin, E., Mirabolfathi, N., Mirzakhani, M., Mohanty, B., Monteiro, D., Nelson, J., Neog, H., Novati, V., Orrell, J. L., Osborne, M. D., Oser, S. M., Pandey, L., Pandey, S., Partridge, R., Pedreros, D. S., Peng, W., Perna, L., Perry, W. L., Podviianiuk, R., Poudel, S. S., Pradeep, A., Pyle, M., Rau, W., Reid, E., Ren, R., Reynolds, T., Rios, M., Roberts, A., Robinson, A. E., Ryan, J. L., Saab, T., Sadek, D., Sadoulet, B., Sahoo, S. P., Saikia, I., Sander, J., Sattari, A., Schmidt, B., Schnee, R. W., Scorza, S., Serfass, B., Simchony, A., Sincavage, D. J., Sinervo, P., Street, J., Sun, H., Tanner, E., Terry, G. D., Toback, D., Verma, S., Villano, A. N., von Krosigk, B., Watkins, S. L., Wen, O., Williams, Z., Wilson, M. J., Winchell, J., Wykoff, K., Yellin, S., Young, B. A., Yu, T. C., Zatschler, B., Zatschler, S., Zaytsev, A., Zhang, E., Zheng, L., Zuniga, A., Zurowski, M. J.
This article presents constraints on dark-matter-electron interactions obtained from the first underground data-taking campaign with multiple SuperCDMS HVeV detectors operated in the same housing. An exposure of 7.63 g-days is used to set upper limit
Externí odkaz:
http://arxiv.org/abs/2407.08085
We present polynomial-augmented neural networks (PANNs), a novel machine learning architecture that combines deep neural networks (DNNs) with a polynomial approximant. PANNs combine the strengths of DNNs (flexibility and efficiency in higher-dimensio
Externí odkaz:
http://arxiv.org/abs/2406.02336
It is well-known that the $d$-dimensional hypercube contains a Hamilton cycle for $d\ge 2$. In this paper we address the analogous problem in the $3$-uniform cube hypergraph, a $3$-uniform analogue of the hypercube: for simple parity reasons, the $3$
Externí odkaz:
http://arxiv.org/abs/2406.00401
Publikováno v:
The Twelfth International Conference on Learning Representations (ICLR 2024)
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDE
Externí odkaz:
http://arxiv.org/abs/2311.04465
Autor:
Diane Carmeliza N. Cuaresma, Maica Krizna A. Gavina, Jomar F. Rabajante, Jerrold M. Tubay, Takuya Okabe, Satoru Morita, Kazuya Kobayashi, Nobuaki Mizumoto, Hiromu Ito, Jin Yoshimura, Satoshi Kakishima, John R. Cooley
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-9 (2024)
Abstract Periodical cicadas are remarkable for their incredibly long, prime-numbered life cycles and almost perfectly synchronized mass emergence. Synchronized emergence is a generally localized event, referred to as a “brood”. Broods are separat
Externí odkaz:
https://doaj.org/article/1446106f6a5e4603812cd80182ab70c4
Autor:
Emily Fearnley, Lex E.X. Leong, Alessia Centofanti, Paul Dowsett, Barry G. Combs, Anthony D.K. Draper, Helen Hocking, Ben Howden, Kristy Horan, Mathilda Wilmot, Avram Levy, Louise A. Cooley, Karina J. Kennedy, Qinning Wang, Alicia Arnott, Rikki M.A. Graham, Vitali Sinchenko, Amy V. Jennison, Stacey Kane, Rose Wright
Publikováno v:
Emerging Infectious Diseases, Vol 30, Iss 11, Pp 2271-2278 (2024)
The bacterium Vibrio parahaemolyticus is ubiquitous in tropical and temperate waters throughout the world and causes infections in humans resulting from water exposure and from ingestion of contaminated raw or undercooked seafood, such as oysters. We
Externí odkaz:
https://doaj.org/article/5301811b05b34013b40c91145a95ec85
Autor:
Cooley, Joya A., Dairaghi, Gregor, Moore, Guy C., Horton, Matthew K., Schueller, Emily C., Persson, Kristin A., Seshadri, Ram
Co$_{1-x}$Mn$_x$Cr$_2$O$_4$ crystallizes as a normal spinel in the cubic $Fd \overline{3}m$ space group, and the end members have been reported to display a region of collinear ferrimagnetism as well as a low-temperature spin-spiral state with variab
Externí odkaz:
http://arxiv.org/abs/2309.16168
Autor:
Mhatre, Nehali, Cooley, Daniel
The innovations algorithm is a classical recursive forecasting algorithm used in time series analysis. We develop the innovations algorithm for a class of nonnegative regularly varying time series models constructed via transformed-linear arithmetic.
Externí odkaz:
http://arxiv.org/abs/2309.10061